Answer:
The equilibrium value of [CO] is 1.04 M
Explanation:
Chemical equilibrium is the state to which a spontaneously evolving chemical system, in which a reversible chemical reaction takes place. When this situation is reached, it is observed that the concentrations of substances, both reagents and reaction products, they remain constant over time. That is, the rate of reaction of reagents to products is the same as that of products to reagents.
Reagent concentrations and products in equilibrium are related by the equilibrium constant Kc. Being:
aA + bB ⇔ cC + dD
![Kc=\frac{[C]^{c} *[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
Then this constant Kces equals the multiplication of the concentrations of the products raised to their stoichiometric coefficients between the multiplication of the concentrations of the reactants also raised to their stoichiometric coefficients.
In this case:
![Kc=\frac{[CH_{3}OH ]}{[CO]*[H_{2} ]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BCH_%7B3%7DOH%20%5D%7D%7B%5BCO%5D%2A%5BH_%7B2%7D%20%5D%5E%7B2%7D%20%7D)
You know:
- Kc= 14.5
- [H₂]= 0.322 M
- [CH₃OH] =1.56 M
Replacing:
![14.5=\frac{1.56}{[CO]*0.322^{2} }](https://tex.z-dn.net/?f=14.5%3D%5Cfrac%7B1.56%7D%7B%5BCO%5D%2A0.322%5E%7B2%7D%20%7D)
Solving:
![[CO]=\frac{1.56}{14.5*0.322^{2} }](https://tex.z-dn.net/?f=%5BCO%5D%3D%5Cfrac%7B1.56%7D%7B14.5%2A0.322%5E%7B2%7D%20%7D)
[CO]= 1.04 M
The equilibrium value of [CO] is 1.04 M
Answer:
In an acid-base equilibrium, acid becomes a conjugate base and base becomes a conjugate acid.
Explanation:
Let's remember the Bronsted-Lowry theory to answer this specific question. According to the theory, acid is a proton donor, while a base is a proton acceptor.
Consider an acid in a form HA (aq) and base in a form of B (aq). Since acid is a proton donor, it will donate its hydrogen ion to the base, B. The resultant products would be
(aq) and
(aq).
Remember that an acid-base reaction is an equilibrium reaction. This means we may also look at this proton transfer reaction from the product side towards the reactants. Summarizing what has been said, we may write the equilibrium as:
⇄ 
Now acid, HA, donates a proton to become a conjugate base. The conjugate base, if we look from the reverse equation side, is actually a base, since it can accept a proton to become HA. Similarly, B accepts a proton to become a conjugate acid. Looking from the reverse reaction, it can now donate a proton, so in reality we can consider it a base.
To summarize, your logic is correct.
Answer:
Newton's second law
Explanation:
It is mentioning acceleration and mass
Newton's second law's equation = F = m*a
Hope u understood
Please mark brainliest
Thank You
Answer : The concentration of NOBr after 95 s is, 0.013 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant =
t = time taken = 95 s
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.86 M
Now put all the given values in above equation, we get:
![0.80=\frac{1}{95}\left (\frac{1}{[A]}-\frac{1}{(0.86)}\right)](https://tex.z-dn.net/?f=0.80%3D%5Cfrac%7B1%7D%7B95%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.86%29%7D%5Cright%29)
[A] = 0.013 M
Hence, the concentration of NOBr after 95 s is, 0.013 M