Answer:The total variation in the amount of light entering our eye is not dectiable therefore planets do not twinkle.
Explanation:Stars twinkle, while planets (usually) shine steadily. Why? Stars twinkle because … they're so far away from Earth that, even through large telescopes, they appear only as pinpoints. ... Planets shine more steadily because … they're closer to Earth and so appear not as pinpoints, but as tiny disks in our sky.As light from a star races through our atmosphere, it bounces and bumps through the different layers, bending the light before you see it. Since the hot and cold layers of air keep moving, the bending of the light changes too, which causes the star's appearance to wobble or twinkle.
Answer:
The same.
Explanation:
Temperature is a measure of the average kinetic energy of a substance; if two pieces of iron have the same temperature, then their particles will have the same amount of average kinetic energy.
Answer:
0.5 V
Explanation:
The electric potential distance between different locations in an electric field area is unaffected by the charge that is transferred between them. It is solely dependent on the distance. Thus, for two electrons pushed together at the same distance into the same field, the electric potential will remain at 1 V. However, the electric potential of one of the two electrons will be half the value of the electric potential for the two electrons.
You don't need both. GPE is the gravitational potential energy caused by the fact that an object is not touching the ground of the earth. KE is caused by an object moving. This problem says that the bowling ball "sits" meaning that you only need the GPE because it's not moving and it is not touching the surface. You would use the GPE equation to find how much Potential energy an object has. If you want its velocity, you would set the answer to the GPE equation equal to the KE equation to find its velocity.
Typical examples of inelastic collision are between cars, airlines, trains, etc.
For instance, when two trains collide, the kinetic energy of each train is transformed into heat, which explains why, most of the times, there is a fire after a collision. However, the momentum of the two trains that are involved in the collision remains unaffected. So, the trains collide with all their speed, maintaining their momentum, yet their kinetic energy is transformed into heat energy.
Another way to explain a train or a car collision is this: when the two trains or cars collide, they stick together while slowing down. They slow down because their kinetic energy is gradually lost. Still, they collide because they conserve their momentum.