Given:
Mass of the rail road car, m = 2 kg
velocity of the three cars coupled system, v' = 1.20 m/s
velocity of first car,
= 3 m/s
Solution:
a) Momentum of a body of mass 'm' and velocity 'v' is given by:
p = mv
Now for the coupled system according to law of conservation of momentum, total momentum of a system before and after collision remain conserved:
(1)
where,
= velocity of the first car
= velocity of the 2 coupled cars after collision
Now, from eqn (1)


v' = 1.80 m/s
Therefore, the velocity of the combined car system after collision is 1.80 m/s
<h2>
Answer: Earth's orbital path around the Sun</h2><h2>
</h2>
The <u>Ecliptic</u> refers to the orbit of the Earth around the Sun. Therefore, <u>for an observer on Earth it will be the apparent path of the Sun in the sky during the year, with respect to the "immobile background" of the other stars.</u>
<u />
It should be noted that the ecliptic plane (which is the same orbital plane of the Earth in its translation movement) is tilted with respect to the equator of the planet about
approximately. This is due to the inclination of the Earth's axis.
Hence, the correct option is Earth's orbital path around the Sun.
Answer:
5 N right
Explanation:
Fx = 9N-4N
Fx = 5N
Since we can define the x and y axis. We have x to the right as positive.
We know that:
W=Fs
200J=150N*s
s=200J/150N
s=1,33m
Explanation:
Given that, the height of the tide measured at a seaside community varies according to the number of hours t after midnight. The height is given by the equation as :

When the tide first be at 6 ft, put h = 6 ft in above equation as :


On solving the above equation to find the value of t. It is equal to :
t = 3.551 seconds
or
t = 8.449 seconds
So, the tide of 6 ft is at 3.551 seconds and 8.449 seconds. Hence, this is the required solution.