Answer is: mass number is 234.
Beta decay is radioactive decay<span> in which a </span>beta ray<span> and a </span>neutrino<span> are emitted from an </span><span>atomic nucleus.
</span>There are two types of beta decay: beta minus<span> and </span>beta plus. <span> In beta minus </span><span>decay, neutron is converted to a proton and an </span>electron<span> and an </span>electron antineutrino and in beta plus <span>decay, a proton is converted to a neutron and </span>positron<span> and an </span>electron neutrino, so mass number does not change.
<span>0.6 = mass/1.2 </span>
<span>mass = 0.6 x 1.2 </span>
<span>= 0.72 g </span>
Answer:
6 cm Hg
Explanation:
Boyles Law: P1V1=P2V2
(100 mL)(x)=(20 mL)(30 cm Hg)
x = 6 cm Hg
*Text me at 561-400-5105 for private tutoring if interested: I can do homework, labs, and other assignments :)
Answer:
286 J/K
Explanation:
The molar Gibbs free energy for the vaporization (ΔGvap) is:
ΔGvap = ΔHvap - T.ΔSvap
where,
ΔHvap: molar enthalpy of vaporization
T: absolute temperature
ΔSvap: molar entropy of the vaporization
When T = Tb = 64.7 °C = 337.9 K, the reaction is at equilibrium and ΔGvap = 0.
ΔHvap - Tb . ΔSvap = 0
ΔSvap = ΔHvap/Tb = (71.8 × 10³ J/K.mol)/ 337.9 K = 212 J/K.mol
When 1.35 mol of methanol vaporizes, the change in the entropy is:

Answer:
A
Explanation:
Anything moving I'd using Kinetic Energy