Answer:
K.E = 30,000 J
Explanation:
Given,
The potential energy of the roller coaster car, P.E = 40000 J
The kinetic energy at height h/4, K.E = ?
According to the law of conservation of energy, the total energy of the system is conserved.
At height 'h', the total energy is,
P.E = mgh
K.E = 0
At height 'h/4', the total energy is
P.E + K.E = mgh
P.E = mgh/4
K.E = 1/2 mv²
Therefore,
mgh/4 + 1/2 mv² = mgh
gh/4 + v²/2 = gh
Hence,
v² = 3gh/2
Substituting in the K.E equation
K.E = 1/2 mv²
= 1/2 m (3gh/2)
= 3/4 mgh
= 3/4 x 40000
= 30000 J
Hence, the K.E of the roller coaster car is, K.E = 30000 J
Answer:
W = 0.678 rad/s
Explanation:
Using the conservation of energy:

Roll up and hill without slipping is the sumatory of two energys, rotational and translational, so:

where I is the moment of inertia, W the angular velocity at the base of the hill, m the mass of the ball, V the velocity at the base of the hill, g the gravity and h the altitude.
First, we will find the moment of inertia as:
I =
where m is the mass and R the radius, so:
I =
I = 36.26 Kg*m^2
Then, replacing values on the initial equation, we get:

also we know that:
V =WR
so:

Finally, solving for W, we get:

W = 0.678 rad/s
Answer:
300 is the answer
Explanation:
Hope that this answer will help you
The formula for<span> </span>mechanical advantage<span> (MA) for levers: You can use the ratio of the input arm length to the output arm length (input/output): Most of the time, levers are used to multiply force to lift heavy objects.</span>
Secondary succession, the more common type of succession, occurs on a surface where an ecosystem has previously existed. It occurs in ecosystems that have been disturbed or disrupted by humans, animals, or by natural processes such as storms, floods, earthquakes, and volcanoes.