Answer:
D is the answer
Explanation:
6.45×7.44= 47.98800
Which if we round of we get 48m
Answer: KE = 62.5J
Explanation:
Given that
Mass of object = 5kg
kinetic energy KE = ?
velocity of object = 5m/s
Since kinetic energy is the energy possessed by a moving object, and it depends on the mass (m) of the object and the velocity (v) by which it moves. Therefore, the object has kinetic energy.
i.e K.E = 1/2mv^2
KE = 1/2 x 5kg x (5m/s)^2
KE = 0.5 x 5 x 25
KE = 62.5J
Thus, the object has 62.5 joules of kinetic energy.
This is another one of those muddy misleading questions, followed by
a muddy group of choices from which an answer must be selected.
a). is absurd. There's no such thing as a "balanced force", only
a balanced group of forces.
b). is probably the choice the question is aiming for.
c). is not so. The engines of an airplane do plenty of work lifting the plane
off the ground, although the force of the engines is never directed upward.
d). is really awkward. The object's motion is almost never the cause of the force.
The force is almost always the cause of the object's motion.
Now for the big 800-lb gorilla in the room: No moving object needs to be involved
in order for energy to be flowing or work to be getting done.
-- A radio wave radiates through space. Straighten out a wire coat-hanger and
stick it up in the air where the radio wave can pass by it. Electrical current flows
through the wire, and you can drain the electrical energy out the bottom of it.
-- A light bulb is shining. Some distance away, something it's shining on
gets warm, because of the heat energy that has shot across to it from the
light bulb and soaked into it.
-- A lightning bolt jumps from the ground to a passing cloud. Or, if you feel
more comfortable with it, a lightning bolt jumps from a cloud to the ground.
It doesn't matter. Either way, there's enough energy splashing around to
ignite houses, zap TVs and computers, melt concrete, vaporize water, and
light up a city. Although nothing is moving.
Answer:
The distance that you marginally able to discern that there are two headlights rather than a single light source is 6.084 km
Explanation:
Given:
d = distance = 0.679 m
λ = wavelength of the light = 537 nm = 537x10⁻⁹m
dp = pupil diameter = 4.81 mm = 0.00481 m
Question: What distance, in kilometers, are you marginally able to discern that there are two headlights rather than a single light source, dx = ?
For the separation of the peak from the central maximum it is:
In this case, the two small sources of the headlights have the same angle as the images that form inside the eye