<span>internet tension = mass * acceleration internet tension = 23 – Friction tension = 14 * acceleration Friction tension = µ * 14 * 9.8 = µ * 137.2 23 – µ * 137.2 = 14 * acceleration Distance = undemanding speed * time undemanding speed = ½ * (preliminary speed + very final speed) Distance = ½ * (preliminary speed + very final speed) * time Distance = 8.a million m, preliminary speed = 0 m/s, very final speed = a million.8 m/s 8.a million = ½ * (0 + a million.8) * t Time = 8.a million ÷ 0.9 = 9 seconds Acceleration = (very final speed – preliminary speed) ÷ time Acceleration = (a million.8 – 0) ÷ 9 = 0.2 m/s^2 23 – µ * 137.2 = 14 * 0.2 resolve for µ</span>
Answer:
The total electrical power we are using is: 1316 W.
Explanation:
Using the ohm´s law
and the formula for calculate the electrical power, we can find the total electrical power that we are using. First we need to find each electrical power that is using every single component, so the radio power is:
, so the radio power is:
, then we find the pop-corn machine power as:
and finally there are three light bulbs of 110(W) so: P=3*110(W)=330(W) and the total electrical power is the adding up every single power so that: P=330(W)+770(W)+216(W)=1316(W).
Resistance = (voltage) / (current)
Resistance = (100 V) / (20 A)
<em>Resistance = 5 Ω (D)</em>