Answer:
A. ΔG° = 132.5 kJ
B. ΔG° = 13.69 kJ
C. ΔG° = -58.59 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
We can calculate the standard enthalpy of the reaction (ΔH°) using the following expression.
ΔH° = ∑np . ΔH°f(p) - ∑nr . ΔH°f(r)
where,
n: moles
ΔH°f: standard enthalpy of formation
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)) - 1 mol × ΔH°f(CaCO₃(s))
ΔH° = 1 mol × (-635.1 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1206.9 kJ/mol)
ΔH° = 178.3 kJ
We can calculate the standard entropy of the reaction (ΔS°) using the following expression.
ΔS° = ∑np . S°p - ∑nr . S°r
where,
S: standard entropy
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)) - 1 mol × S°(CaCO₃(s))
ΔS° = 1 mol × (39.75 J/K.mol) + 1 mol × (213.74 J/K.mol) - 1 mol × (92.9 J/K.mol)
ΔS° = 160.6 J/K. = 0.1606 kJ/K.
We can calculate the standard Gibbs free energy of the reaction (ΔG°) using the following expression.
ΔG° = ΔH° - T.ΔS°
where,
T: absolute temperature
<h3>A. 285 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 285K × 0.1606 kJ/K = 132.5 kJ
<h3>B. 1025 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1025K × 0.1606 kJ/K = 13.69 kJ
<h3>C. 1475 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1475K × 0.1606 kJ/K = -58.59 kJ
Answer:
It would have to be around 9.8 volume
Explanation:
Answer:
237.2 mL.
Explanation:
- We have the rule: at neutralization, the no. of millimoles of acid is equal to the no. of millimoles of the base.
(XMV) acid = (XMV) base.
where, X is the no. of (H) or (OH) reproducible in acid or base, respectively.
M is the molarity of the acid or base.
V is the volume of the acid or base.
<em>(XMV) HCl = (XMV) NaOH.</em>
<em></em>
For HCl; X = 1, M = 0.5 M, V = ??? mL.
For NaOH, X = 1, M = 1.54 M, V = 77.0 mL.
<em>∴ V of HCl = (XMV) NaOH / (XV) HCl = (</em>1)(1.54 M)(77.0 mL) / (1)(0.5 M) = <em>237.2 mL.</em>
The equation is already balanced.
Hey there!
C₉H₂O + O₂ → CO₂ + H₂O
First let's balance the C.
There's 9 on the left and 1 on the right. So, let's add a coefficient of 9 in front of CO₂.
C₉H₂O + O₂ → 9CO₂ + H₂O
Next let's balance the H.
There's 2 on the left and 2 on the right. This means it's already balanced.
C₉H₂O + O₂ → 9CO₂ + H₂O
Lastly, let's balance the O.
There's 3 on the left and 19 on the right. So, let's add a coefficient of 9 in front of O₂.
C₉H₂O + 9O₂ → 9CO₂ + H₂O
This is our final balanced equation.
Hope this helps!