<u>Answer:</u> The pressure equilibrium constant for the reaction is 1473.8
<u>Explanation:</u>
We are given:
Initial partial pressure of methane gas = 2.4 atm
Initial partial pressure of water vapor = 3.9 atm
Equilibrium partial pressure of hydrogen gas = 6.5 atm
The chemical equation for the reaction of methane gas and water vapor follows:
![CH_4+H_2O\rightleftharpoons CO+3H_2](https://tex.z-dn.net/?f=CH_4%2BH_2O%5Crightleftharpoons%20CO%2B3H_2)
<u>Initial:</u> 2.4 3.9
<u>At eqllm:</u> 2.4-x 3.9-x x 3x
Evaluating the value of 'x':
![\Rightarrow 3x=6.5\\\\x=2.167](https://tex.z-dn.net/?f=%5CRightarrow%203x%3D6.5%5C%5C%5C%5Cx%3D2.167)
So, equilibrium partial pressure of methane gas = (2.4 - x) = [2.4 - 2.167] = 0.233 atm
Equilibrium partial pressure of water vapor = (3.9 - x) = [3.9 - 2.167] = 1.733 atm
Equilibrium partial pressure of carbon monoxide gas = x = 2.167 atm
The expression of
for above equation follows:
![K_p=\frac{p_{CO}\times (p_{H_2})^3}{p_{CH_4}\times p_{H_2O}}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7Bp_%7BCO%7D%5Ctimes%20%28p_%7BH_2%7D%29%5E3%7D%7Bp_%7BCH_4%7D%5Ctimes%20p_%7BH_2O%7D%7D)
Putting values in above equation, we get:
![K_p=\frac{2.167\times (6.5)^3}{0.233\times 1.733}\\\\K_p=1473.8](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B2.167%5Ctimes%20%286.5%29%5E3%7D%7B0.233%5Ctimes%201.733%7D%5C%5C%5C%5CK_p%3D1473.8)
Hence, the pressure equilibrium constant for the reaction is 1473.8