Answer:According to NEC 220.12,
“the floor area shall be calculated from outside dimensions of the buildings, dwelling unit, or other area involved.
The area should not include open porches, garages or unused or unfinished spaces not adaptable for future use”.
pa brainliest plss..thankss
Explanati
The answer is A
Hope this helps 8)
Answer:
work=281.4KJ/kg
Power=4Kw
Explanation:
Hi!
To solve follow the steps below!
1. Find the density of the air at the entrance using the equation for ideal gases

where
P=pressure=120kPa
T=20C=293k
R= 0.287 kJ/(kg*K)=
gas constant ideal for air

2.find the mass flow by finding the product between the flow rate and the density
m=(density)(flow rate)
flow rate=10L/s=0.01m^3/s
m=(1.43kg/m^3)(0.01m^3/s)=0.0143kg/s
3. Please use the equation the first law of thermodynamics that states that the energy that enters is the same as the one that must come out, we infer the following equation, note = remember that power is the product of work and mass flow
Work
w=Cp(T1-T2)
Where
Cp= specific heat for air=1.005KJ/kgK
w=work
T1=inlet temperature=20C
T2=outlet temperature=300C
w=1.005(300-20)=281.4KJ/kg
Power
W=mw
W=(0.0143)(281.4KJ/kg)=4Kw
Answer:
2.9*10^14 electrons
Explanation:
An Ampere is the flow of one Coulomb per second, so 35 μA = is 35*10^-6 C per second.
An electron has a charge of 1.6*10^-19 C.
35*10^-6 / 1.6*10^-19 = 2.9*10^14 electrons
So, with a current o 35 μA you have an aevrage of 2.9*10^14 electrons flowing past a fixed reference cross section perpendicular to the direction of flow.
Answer:
Temperature on the inside ofthe box
Explanation:
The power of the light bulb is the rate of heat conduction of the bulb, 
The thickness of the wall, L = 1.2 cm = 0.012m
Length of the cube's side, x = 20cm = 0.2 m
The area of the cubical box, A = 6x²
A = 6 * 0.2² = 6 * 0.04
A = 0.24 m²
Temperature of the surrounding, 
Temperature of the inside of the box, 
Coefficient of thermal conductivity, k = 0.8 W/m-K
The formula for the rate of heat conduction is given by: