Answer:
A)
B)
C)
Explanation:
Given that:
- no. of turns i the coil,

- area of the coil,

- time interval of rotation,

- intensity of magnetic field,

(A)
Initially the coil area is perpendicular to the magnetic field.
So, magnetic flux is given as:
..................................(1)
is the angle between the area vector and the magnetic field lines. Area vector is always perpendicular to the area given. In this case area vector is parallel to the magnetic field.


(B)
In this case the plane area is parallel to the magnetic field i.e. the area vector is perpendicular to the magnetic field.
∴ 
From eq. (1)


(C)
According to the Faraday's Law we have:



Answer:
B. About 12 degrees
Explanation:
The orbital period is calculated using the following expression:
T = 2π*(
)
Where r is the distance of the planet to the sun, G is the gravitational constant and m is the mass of the sun.
Now, we don't actually need to solve the values of the constants, since we now that the distance from the sun to Saturn is 10 times the distance from the sun to the earth. We now this because 1 AU is the distance from the earth to the sun.
Now, we divide the expression used to calculate the orbital period of Saturn by the expression used to calculate the orbital period of the earth. Notice that the constants will cancel and we will get the rate of orbital periods in terms of the distances to the sun:
= 
Knowing that the orbital period of the earth is 1 year, the orbital period of Saturn will be
years, or 31.62 years.
We find the amount of degrees it moves in 1 year:

or about 12 degrees.
Iron nail. the rest of those are not iron or some form of magnetic material.
answer: transverse and longitudinal
The easiest way to build a unit for energy is to remember that
'work' is energy, and
Work = (force) x (distance).
So energy is (unit of force) x (unit of distance)
[Energy] = (Newton) (meter) .
'Newton' itself is a combination of base units, so
energy is really
(kilogram-meter/sec²) (meter)
= kilogram-meter² / sec² .
That unit is so complicated that it's been given a special,
shorter name:
Joule .
It doesn't matter what kind of energy you're talking about.
Kinetic, potential, nuclear, electromagnetic, food, chemical,
muscle, wind, solar, steam ... they all boil down to Joules.
And if you generate, use, transfer, or consume 1 Joule of
energy every second, then we say that the 'power' is '1 watt'.