W = mg = 350 newton
m = W/g = 350/9.8 = 35.71 kg
on mars
W = mg = 134 newton
g = W/m = 134/35.71 = 3.75 meters/second2
Answer:
The value of the spring constant of this spring is 1000 N/m
Explanation:
Given;
equilibrium length of the spring, L = 10.0 cm
new length of the spring, L₀ = 14 cm
applied force on the spring, F = 40 N
extension of the spring due to applied force, e = L₀ - L = 14 cm - 10 cm = 4 cm
From Hook's law
Force applied to a spring is directly proportional to the extension produced, provided the elastic limit is not exceeded.
F ∝ e
F = ke
where;
k is the spring constant
k = F / e
k = 40 / 0.04
k = 1000 N/m
Therefore, the value of the spring constant of this spring is 1000 N/m
Answer:
0.06 N
1.08 m/s
Explanation:
m = mass of the fan cart = 0.250 kg
a = acceleration of the fan cart = 24 cm/s² = 0.24 m/s²
F = Net force on the cart
Net force on the cart is given as
F = ma
F = (0.250) (0.24)
F = 0.06 N
v₀ = initial velocity of the cart = 0 m/s
v = final velocity of the cart
t = time interval = 4.5 s
Using the equation
v = v₀ + a t
v = 0 + (0.24) (4.5)
v = 1.08 m/s