They are incline hope this helps!
Answer:
50 N
Explanation:
Let the natural length of the spring = L
so
100 = k(40 - L) (1)
200 = k(60 - L) (2)
(2)/(1): 2 = (60 - L)/(40 - L)
60 - L = 2(40 - L)
60 - L = 80 - 2L
2L - L = 80 - 60
L = 20
Sub it into (1):
100 = k(40 - 20) = 20k
k = 100/20 = 5 N/in
Now
X = k(30 - L) = 5(30 - 20) = 50 N
Answer:
44.6 N
Explanation:
Draw a free body diagram of the block. There are four forces on the block:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
and applied force F pulling right 30° above horizontal.
Sum of forces in the y direction:
∑F = ma
N + F sin 30° − mg = 0
N = mg − F sin 30°
Sum of forces in the x direction:
∑F = ma
F cos 30° − Nμ = 0
F cos 30° = Nμ
N = F cos 30° / μ
Substitute:
mg − F sin 30° = F cos 30° / μ
mg = F sin 30° + (F cos 30° / μ)
Plug in values:
mg = 20 N sin 30° + (20 N cos 30° / 0.5)
mg = 44.6 N
Answer:
Explanation:
To calculate the time it took the car to hit the ground, we use the formula
speed = distance/time
80 m/s = 300 m/time
time = 300/80
time = 3.75 secs
It must have taken the car 3.75 seconds to hit the ground
To determine the horizontal distance of the car before hitting the ground, the same formula will also be used but with the time obtained above (since that was the time it took before hitting the ground)
speed = distance/time
80 = distance/3.75
distance = 3.75 x 80
distance = 300 meters