Answer: The concentration of hydrogen ions for this solution is
.
Explanation:
Given: pOH = 11.30
The relation between pH and pOH is as follows.
pH + pOH = 14
pH + 11.30 = 14
pH = 14 - 11.30
= 2.7
Also, pH is the negative logarithm of concentration of hydrogen ions.
![pH = - log [H^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5BH%5E%7B%2B%7D%5D)
Substitute the values into above formula as follows.
![pH = -log [H^{+}]\\2.7 = -log [H^{+}]\\conc. of H^{+} = 1.99 \times 10^{-3}](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5C2.7%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5Cconc.%20of%20H%5E%7B%2B%7D%20%3D%201.99%20%5Ctimes%2010%5E%7B-3%7D)
Thus, we can conclude that the concentration of hydrogen ions for this solution is
.
The same as alittle molecule but it would be in a mase quantity...
Answer:In determining the energy of activation, why was it prudent to run the slowest trial done at room temperature in the hot water bath and the fastest trial done at room temperature in the cold water bath?
Explanation:
Answer:
- 6.38x10²² molecules C₆H₁₂O₆
Explanation:
First we <u>convert the given masses into moles</u>, using the <em>compounds' respective molar mass</em>:
- 64.7 g N₂ ÷ 28 g/mol = 2.31 mol N₂
- 83 g CCl₄ ÷ 153.82 g/mol = 0.540 mol CCl₄
- 19 g C₆H₁₂O₆ ÷ 180 g/mol = 0.106 mol C₆H₁₂O₆
Then we multiply each amount by <em>Avogadro's number</em>, to <u>calculate the number of molecules</u>:
- 2.31 mol N₂ * 6.023x10²³ molecules/mol = 1.39x10²⁴ molecules
- 0.540 mol CCl₄ * 6.023x10²³ molecules/mol = 3.25x10²³ molecules
- 0.106 mol C₆H₁₂O₆ * 6.023x10²³ molecules/mol = 6.38x10²² molecules