Answer:
the minimum width is b= 0.1414m = 141mm
Explanation:
]given,
L= 4.25
w₀ = 5.5kN/m,
allowable bending stress = 7MPa
allowable shear stress = 875kPa
h/b = 0.67
b = ?
for a linearly distributed load, with maximum load intensity, w₀ of 5.5kN/m,
the maximum moment, M exerted by the timber is = ![\frac{w₀ L²}{9√3}[/texM = w₀ L²}/{9√3 = 99.34/15.6 =6.367kNmfor a linearly distributed load, with maximum load intensity, w₀ of 5.5kN/m, the shear force, V = [tex]\frac{w₀ L}{2}[/texV = {w₀ L}/{3} = 7.79kNfor maximum bending stress of a rectangular timber, B, = [tex]\frac{6M}{bh²}](https://tex.z-dn.net/?f=%5Cfrac%7Bw%E2%82%80%20L%C2%B2%7D%7B9%E2%88%9A3%7D%5B%2Ftex%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3EM%20%3D%20w%E2%82%80%20L%C2%B2%7D%2F%7B9%E2%88%9A3%20%3D%2099.34%2F15.6%20%3D6.367kNm%3C%2Fp%3E%3Cp%3Efor%20a%20linearly%20distributed%20load%2C%20with%20maximum%20load%20intensity%2C%20w%E2%82%80%20of%205.5kN%2Fm%2C%20the%20shear%20force%2C%20V%20%3D%20%20%5Btex%5D%5Cfrac%7Bw%E2%82%80%20L%7D%7B2%7D%5B%2Ftex%3C%2Fp%3E%3Cp%3EV%20%3D%20%7Bw%E2%82%80%20L%7D%2F%7B3%7D%20%3D%207.79kN%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3Efor%20maximum%20bending%20stress%20of%20a%20rectangular%20timber%2C%20B%2C%20%3D%20%5Btex%5D%5Cfrac%7B6M%7D%7Bbh%C2%B2%7D)
given h/b = 0.67, i.e h=0.67b
allowable bending stress =
= 7000kPa
7000 = (6*6.37)/ (b *(0.67b)² ) = 38.21/0.449b³
3080b³=38.21
b³ = 38.21/3080 = 0.0124
b = 0.232m
h=0.67b = 0.67* 0.232 = 0.155m
for allowable shear stress = (3V)/(2bh)
875 = (3V)/(2bh) = (3x 7.79)/(2xbx0.67b)
875 = 23.375/1.34b²
1172.5 b²= 23.375
b² =0.0199
b= 0.1414m
h=0.67b = 0.67* 0.1414 = 0.095m
the minimum width is b= 0.1414m = 141mm