When you mix soap with water, you are diluting it unto less strong soap.
When you use soap and water mixed togehter to wash your hands, you are using the chemical propertiies of the soap to your advantage. The soap is made of hundreds of thousands of tiny strands that have a "water loving" end and a "oil loving" end. The oil loving ends attach to the oil on your skin, and the water loving ends stick out. This is called a micelle. Thousnds of micelles form and are ready to be rinsed away, with the oil that was on your skin inside of them. We need soap insted of just water because oil does not mix with water, and therfore cannot just be rinsed off with it.
To solve this problem, we use the Boyle's law which states that "the volume of a fixed mass of a gas varies inversely as the pressure changes if the temperature is constant".
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
The cations and anions being oppositely charged attract each other through strong coloumbic forces and form an ionic bond.
(1) Sodium is carrying +1 charge called as cation and chloride is an anion carrying -1 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(2) Sodium is carrying +1 charge called as cation and phosphate is an anion carrying -3 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(3) Sodium is carrying +1 charge called as cation and sulfate is an anion carrying -2 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(4) Sodium is carrying +1 charge called as cation and carbonate is an anion carrying -2 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(5) Potassium is carrying +1 charge called as cation and chloride is an anion carrying -1 charge. They form .
(6) Potassium is carrying +1 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(7) Potassium is carrying +1 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(8) Potassium is carrying +1 charge called as cation and carbonate is an anion carrying -2 charge. They form .
(9) Calcium is carrying +2 charge called as cation and chloride is an anion carrying -1 charge. They form .
(10) Calcium is carrying +2 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(11) Calcium is carrying +2 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(12) Calcium is carrying +2 charge called as cation and carbonate is an anion carrying -2 charge. They form .
(13) Ammonium ion is carrying +1 charge called as cation and chloride is an anion carrying -1 charge. They form .
(14) Ammonium ion is carrying +1 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(15) Ammonium ion is carrying +1 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(16) Ammonium ion is carrying +1 charge called as cation and carbonate is an anion carrying -2 charge. They form .
(17) Iron is carrying +3 charge called as cation and chloride is an anion carrying -1 charge. They form .
(18) Iron is carrying +3 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(19) Iron is carrying +3 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(20) Iron is carrying +3 charge called as cation and carbonate is an anion carrying -2 charge. They form .