No, it is very unlikely for that to happen.
Answer : All of the above are valid expressions of the reaction rate.
Explanation :
The given rate of reaction is,

The expression for rate of reaction for the reactant :
![\text{Rate of disappearance of }NH_3=-\frac{1}{4}\times \frac{d[NH_3]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DNH_3%3D-%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20%5Cfrac%7Bd%5BNH_3%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }O_2=-\frac{1}{7}\times \frac{d[O_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DO_2%3D-%5Cfrac%7B1%7D%7B7%7D%5Ctimes%20%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
The expression for rate of reaction for the product :
![\text{Rate of formation of }NO_2=+\frac{1}{4}\times \frac{d[NO_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DNO_2%3D%2B%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D)
![\text{Rate of formation of }H_2O=+\frac{1}{6}\times \frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DH_2O%3D%2B%5Cfrac%7B1%7D%7B6%7D%5Ctimes%20%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
From this we conclude that, all the options are correct.
Grams ethanol = 33 ml times .789 gms/ml = 26.037 gms
<span>Moles ethanol = 26.037 gms / 46 gms/mole = .57 moles </span>
<span>Moles water = 67 ml or 67 grams/18 gms/mole = 3.22 moles </span>
<span>total moles = .57 + 3.72 = 4.29 moles </span>
<span>Mole fraction ethanol = .57 moles ethanol / 4.29 moles total = 0.13</span>
<span>Moles fraction water = 3.72 moles water / 4.29 moles total = 0.87</span>
<span>Partial pressure of ethanol = mole fraction ethanol (.13) _ times VP ethanol 43.9 torr) = 5.707 torr </span>
<span>partial pressure water = mole fraction water .87) times VP water (l7.5 torr) = 15.23 torr </span>
<span>Total vapor pressure over solution = 5.71 torr + 15.23 torr = 20.94 torr</span>
Answer:
Elements form compounds to satisfy the octet rule. Noble gasses never form compounds because they already satisfy the octet rule.
Explanation:
The octet Rule is the theory that an element will attempt to gain a valence of 8 by binding with another element in it's vicinity. This can happen in a variety of ways, but the main thing to remember is that they will take the "shortest path" to 8(I.e an element will sometimes lose an electron or 2 if it has a valence 1 or 2 to loop back around to 8, while an element with a valence of 6 or 7 will attempt to gain 2 or 1 electrons).
Valence of elements can be counted by group in the image attached.
Group 1 has a valence of 1, Group 2 has a valence of 2, then we move to group 13 which has a valence of 3, group 14 has a valence of 4, group 15 has a valence of 5, group 16 has 6, group 17 has 7, and group 18 is the noble gasses which have 8.
<span>In a chemical change, the molecular structure of a substance changes. I think this is right. I hope this helps.</span>