♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
The force of friction is equal to the product of the vertical force applied by the surface to the object in the coefficient of friction.
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
In this question ,
surface vertical force = Weight of the object
Thus ;
svf = ( mass ) × ( gravity acceleration )
_________________________________
If gravity acceleration is 10 :
svf = 10 × 10 = 100 N
So ;
frictional force = 100 × 0.20
frictional force = 20 N
##############################
If gravity acceleration is 9.8 :
svf = 10 × 9.8 = 98 N
So ;
frictional force = 98 × 0.20
frictional force = 19.6 N
_________________________________
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Steel paper clip because it can be moved by the magnet and it is lighter than the iron nail
Answer:
14.2 m/s
Explanation:
Given data:
Speed of the stream, v₁ = 7.1 m/s
let the cross section area at initial point be A₁
now area at the second point, A₂ = (1/2)A₁ = 0.5A₁
now, from the continuity equation, we have
A₁v₁ = A₂v₂
where, v₂ is the velocity at the narrowed portion
thus, on substituting the values, we get
A₁ × 7.1 = 0.5A₁ × v₂
or
v₂ = 14.2 m/s
Answer:
a.) The main scale reading is 10.2cm
b.) Division 7 = 0.07
c.) 10.27 cm
d.) 10.31 cm
e.) 10.24 cm
Explanation:
The figure depicts a vernier caliper readings
a.) The main scale reading is 10.2 cm
The reading before the vernier scale
b.) Division 7 = 0.07
the point where the main scale and vernier scale meet
c.) The observed readings is
10.2 + 0.07 = 10.27 cm
d.) If the instrument has a positive zero error of 4 division
correct reading = 10.27 + 0.04 = 10.31cm
e.) If the instrument has a negative zero error of 3 division
correct reading = 10.27 - 0.03 = 10.24cm