Answer:
Most substituted alkene is produced as a major product
Explanation:
- Dehydration of 3-methyl-2-butanol proceeds through E1 mechanism to form alkenes.
- Most substituted alkene is produced as major product because of presence of highest number of hyperconjugative hydrogen atoms corresponding to the produced double bond (Saytzeff product).
- Here, a H-shift also occurs in one of the intermediate step during dehydration to produce more stable tertiary carbocation.
- Reaction mechanism has been shown below.
Mass of Iron (Fe): 55.845Mass of Bromine (Br): 79.904
You need to multiply the mass of Br by 3 because there are 3 Bromine atoms.
(79.904)(3)+ 55.845= 239.712+55.845 = 295.557 g/mol
Answer:
After the transfer the pressure inside the 20 L vessel is 0.6 atm.
Explanation:
Considering O2 as an ideal gas, it is at an initial state (1) with V1 = 3L and P1 = 4 atm. And a final state (2) with V2 = 20L. The temperature remain constant at all the process, thus here applies the Boyle-Mariotte law. This law establishes that at a constant temperature an ideal gas the relationship between pressure and volume remain constant at all time:

Therefore, for this problem the step by step explanation is:

Clearing P2 and replacing

3.67 grams is the volume of the solution