Answer:
14m/s
Explanation:
Given parameters:
Radius of the curve = 50m
Centripetal acceleration = 3.92m/s²
Unknown:
Speed needed to keep the car on the curve = ?
Solution:
The centripetal acceleration is the inwardly directly acceleration needed to keep a body along a curved path.
It is given as;
a =
a is the centripetal acceleration
v is the speed
r is the radius
Now insert the parameters and find v;
v² = ar
v² = 3.92 x 50 = 196
v = √196 = 14m/s
A crazy sport thats kinda dangerous
False. They have same magnitude and opposite direction but they never cancel as each of them does the action on the other body, and for the forces to cancel out they need to act ob the same body.
Hope this helps!
Answer:
Explanation:
Project mass m=3.8 kg
Initial speed vi= 0m/s
Final speed vf= 9.3×10³ m/s
Force F=9.3×10⁵N
To find
Time t
Solution
From Newtons second law we know that
∑F=ma
Where m is mass
a is acceleration
We can write this equation as
∑F=m(Δv/Δt)
Rearrange this equation to find time t
So
Substitute the given values