Answer:
450,000m = 450km = 4.5E5
32,600,000W = 32.6MW = 3.26E7
59,700,000,000cal = 59.7Gcal = 5.97E10
0.000000083s = 83ns = 8.3E-8
35,000Ω = 35kΩ = 3.5E4
Explanation:
Giga = 1,000,000,000
Mega = 1,000,000
kilo = 1,000
unit = 1
deci = .1
centi = .01
milli = .001
micro = .000001
nano = .0000000001
pico = .000000000001
You should be able to look at these and convert between them in seconds if you want to pursue anything in engineering.
D D D D D D D D D D D D D D D DdDdddddf
The precautions that should be taken to avoid the overloading of domestic electric circuits are:
- Do not put high voltage wires in one socket.
- Do not use many electric appliances of high power at the same time.
<h3>What are electric circuits?</h3>
Electric circuits are wires or devices that give electricity to devices that run on electricity. Running of electric devices should be done carefully because our body can come in contact with the current.
Thus, the precautions are to keep high voltage lines away from one socket. Use only a few high-power electric appliances at once.
To learn more about electric circuits, refer to the below link:
brainly.com/question/28221759
#SPJ4
Answer:
Explanation:
a) the steady-state, 1-D incompressible and no energy generation equation can be expressed as follows:

b) For a transient, 1-D, constant with energy generation
suppose T = f(x)
Then; the equation can be expressed as:

where;
= heat generated per unit volume
= Thermal diffusivity
c) The heat equation for a cylinder steady-state with 2-D constant and no compressible energy generation is:

where;
The radial directional term =
and the axial directional term is 
d) The heat equation for a wire going through a furnace is:
![\dfrac{\partial ^2 T}{\partial z^2} = \dfrac{1}{\alpha}\Big [\dfrac{\partial ^2 T}{\partial ^2 t}+ V_z \dfrac{\partial ^2T}{\partial ^2z} \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20%5E2%20T%7D%7B%5Cpartial%20z%5E2%7D%20%3D%20%5Cdfrac%7B1%7D%7B%5Calpha%7D%5CBig%20%5B%5Cdfrac%7B%5Cpartial%20%5E2%20T%7D%7B%5Cpartial%20%5E2%20t%7D%2B%20V_z%20%5Cdfrac%7B%5Cpartial%20%5E2T%7D%7B%5Cpartial%20%5E2z%7D%20%5CBig%20%5D)
since;
the steady-state is zero, Then:
'
e) The heat equation for a sphere that is transient, 1-D, and incompressible with energy generation is:
