The residential end-use sector has the largest seasonal variance, with significant spikes in demand every summer and winter. Virtually all homes that have air conditioning use electricity as the main source of cooling in the summer, while winter heating needs are met by a variety of fuels. Some homes use electric resistance heating and electric heat pumps, but even homes with other heating fuels such as natural gas or fuel oil still use some electricity to power furnace fans, boiler circulation pumps, and compressors.
The commercial sector experiences less variance in electricity use, although it shows a noticeable increase in the summer and a slight increase in the winter. Compared to the residential sector, a smaller portion of commercial sector energy consumption is devoted to heating, cooling, and ventilation. However, other energy fuels beyond electricity can be used in the commercial sector to meet both heating and cooling needs. For example, some commercial buildings use natural gas-fired chillers for cooling.
The industrial sector's demand for electricity is relatively flat (with just a slight increase in the summer) because a much smaller portion of its energy consumption (electric and otherwise) is used for heating and cooling. Economic variables generally play a larger role in industrial energy use than weather-related factors. However, seasonal changes can affect industrial activity. For example, in the refining industry, different seasonal slates of petroleum products as well as different seasonal processes may affect electricity needs.
The values of the coefficients would be 4, 5, 4, and 6 respectively.
<h3>Balancing chemical equations</h3>
The equation of the reaction can be represented by the following chemical equation:
ammonia (g) + oxygen (g) ---> nitrogen monoxide (g) + water (g)
+ ---> +
Thus, the coefficient of ammonia will be 4, that of oxygen will be 5, that of nitrogen monoxide will be 4, and that of water will be 6.
More on balancing chemical equations can be found here: brainly.com/question/15052184
#SPJ1
Answer:
There are 1.8021 ⋅ 1024 molecules of CH4 in 48 grams of CH4. To answer this question, you must understand how to convert grams of a molecule into the number of molecules. To do this, you have to utilize the concepts of moles and molar mass. A mole is just a unit of measurement. Avogadro's number is equal to 6.022 ⋅1023 molecules/mole. i think please dont complain to me if its wrong im sorry
Explanation:
The molar extinction coefficient is 15,200 .
The formula to be used to calculate molar extinction coefficient is -
A = ξcl, where A represents absorption, ξ refers molar extinction coefficient, c refers to concentration and l represents length.
The given values are in required units, hence, there is no need to convert them. Directly keeping the values in formula to find the value of molar extinction coefficient.
Rewriting the formula as per molar extinction coefficient -
ξ =
ξ =
Performing multiplication in denominator to find the value of molar extinction coefficient
ξ =
Performing division to find the value of molar extinction coefficient
ξ = 15,200
Hence, the molar extinction coefficient is 15,200 .
Learn more about molar extinction coefficient -
brainly.com/question/14744039
#SPJ4
Answer:
Sr 2+(aq) + SO42-(aq) → SrSO4(s)
Explanation:
<u>Step 1</u>: Write a properly balanced equation with states:
K2SO4(aq) + Srl2(aq) → 2KI(aq) + SrSO4(s)
<u>Step 2</u>: write the full ionic equation with states. Remember to keep molecules intact. Only states (aq) will dissociate, (s) will not dissociate
. This means SrSO4 won't dissociate.
2K+(aq) + SO42-(aq) + Sr 2+(aq) + 2I-(aq) → 2K+(aq) + 2I-(aq) + SrSO4(s)
<u>Step 3</u>: Balanced net ionic equation
Sr 2+(aq) + SO42-(aq) → SrSO4(s)