Answer: I think the answer is 1
i just learned this about two weeks ago
Explanation:
Answer:
A-10
Explanation:
In the SI, designations of multiples and subdivision of any unit may be arrived at by combining with the name of the unit the prefixes deka, hecto, and kilo meaning, respectively, 10, 100, and 1000, and deci, centi, and milli, meaning, respectively, one-tenth, one-hundredth, and one-thousandth.
IM NOT SURE PO
Using Phosphoric acid will work perfectly for producing Hydrogen halides because its not an Oxidizing agent. ...
Using an ionic chloride and Phosphoric acid
H3PO4 + NaCl ==> HCl + NaH2PO4
H3PO4 + NaI ==> HI + NaH2PO4
H2SO4 + NaCl ==> HCl + NaHSO4
This method(Using H2So4) will work for all hydrogen hydrogen halide except Hydrogen Iodide and Hydrogen Bromide.
The Sulphuric acid won't be useful for producing Hydrogen Iodide because its an OXIDIZING AGENT. Whist producing the Hydrogen Iodide... Some of the Iodide ions are oxidized to Iodine.
2I-² === I2 + 2e-
Answer : The temperature of liquid is, 369.9 K
Explanation :
The Clausius- Clapeyron equation is :

where,
= vapor pressure of liquid at 373 K = 681 torr
= vapor pressure of liquid at normal boiling point = 760 torr
= temperature of liquid = ?
= normal boiling point of liquid = 373 K
= heat of vaporization = 40.7 kJ/mole = 40700 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:


Hence, the temperature of liquid is, 369.9 K
Answer:
Aqua regia is a mixture of nitric acid and hydrochloric acid, optimally in a molar ratio of 1:3. Aqua regia is a yellow-orange fuming liquid, so named by alchemists because it can dissolve the noble metals gold and platinum, though not all metals.
Explanation: