S~ cientists publish their original research in scientific journals, which are fundamentally different from news magazines. The articles in scientific journals are not written by journalists – they are written by scientists. Scientific articles are not sensational stories intended to entertain the reader with an amazing discovery, nor are they news stories intended to summarize recent scientific events, nor even records of every successful and unsuccessful research venture. Instead, scientists write articles to describe their findings to the community in a transparent manner.
The mass of a rollercoaster car moving at a velocity of 30 meters/second and has a momentum of 2.5 × 104 kilogram meters/second is 8.3 × 10²kg.
<h3>How to calculate mass?</h3>
The mass of the roller coaster car can be calculated using the following formula:
P = m × v
Where;
- P = momentum
- m = mass
- v = velocity
m = 2.5 × 10⁴ ÷ 30
m = 8.3 × 10²kg
Therefore, the mass of a rollercoaster car moving at a velocity of 30 meters/second and has a momentum of 2.5 × 104 kilogram meters/second is 8.3 × 10²kg.
Learn more about mass at: brainly.com/question/19694949
#SPJ1
A few people criticized Darwin for his theory, such as the left-leaning biologists Stephen Jay Gould and Richard Lewontin, who fear the political implications of Darwinian theory. They fear that evolutionary theory, even when bolstered by modern genetics, and molecular biology, does not make reality probable enough.
Answer:
<em>h = 20 m</em>
Explanation:
<u>Gravitational Potential Energy</u>
Gravitational potential energy (GPE) is the energy stored in an object due to its vertical position or height in a gravitational field.
It can be calculated with the equation:
U=m.g.h
Where m is the mass of the object, h is the height with respect to a fixed reference, and g is the acceleration of gravity or
.
The weight of an object of mass m is:
W = m.g
Thus, the GPE is:
U=W.h
Solving for h:

The weight of the owl is W=40 N and its GPE is U=800 J.

h = 20 m
Answer:
h'=0.25m/s
Explanation:
In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).
So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of
. As you may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:

notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.
If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:

When solving for r, we get:

so we can substitute this into our volume of a cone formula:

which simplifies to:


So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:

Which simplifies to:

So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)
So we get:

Now we can substitute the provided values into our equation. So we get:

so:
