1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Colt1911 [192]
3 years ago
14

Two friction disks A and B are brought into contact when the angular velocity of disk A is 240 rpm counterclockwise and disk B i

s at rest. A period of slipping follows and disk B makes 2 revolutions before reaching its final angular velocity. Assuming that the angular acceleration of each disk is constant and inversely proportional to the cube of its radius, determine (a) the angular acceleration of each disk, (b) the time during which the disks slip.
Physics
1 answer:
mel-nik [20]3 years ago
6 0

Answer:

a) αA = 4.35 rad/s²

αB = 1.84 rad/s²

b) t = 3.7 rad/s²

Explanation:

Given:

wA₀ = 240 rpm = 8π rad/s

wA₁ = 8π -αA*t₁

The angle in B is:

\theta _{B} =4\pi =\frac{1}{2} \alpha _{B} t_{1}^{2}  =\frac{1}{2} (\frac{r_{A} }{r_{B} } )^{3} \alpha _{A} t_{1}^{2}=\frac{1}{2} (\frac{0.15}{0.2} )^{3} \alpha _{A} t_{1}^{2}

\alpha _{A} =8\pi (\frac{0.2}{0.15} )^{3} =59.57rad

w_{B,1} =\alpha _{B} t_{1}=(\frac{0.15}{0.2} )^{3} \alpha _{A} t_{1}=0.422\alpha _{A} t_{1}

The velocity at the contact point is equal to:

v=r_{A} w_{A} =0.15*(8\pi -\alpha _{A} t_{1})=1.2\pi -0.15\alpha _{A} t_{1}

v=r_{B} w_{B} =0.2*(0.422\alpha _{A} t_{1})=0.0844\alpha _{A} t_{1}

Matching both expressions:

1.2\pi -0.15\alpha _{A} t_{1}=0.0844\alpha _{A} t_{1}\\\alpha _{A} t_{1}=16.09rad/s

b) The time during which the disks slip is:

t_{1} =\frac{\alpha _{A} t_{1}^{2}}{\alpha _{A} t_{1}} =\frac{59.574}{16.09} =3.7s

a) The angular acceleration of each disk is

\alpha _{A}=\frac{\alpha _{A} t_{1}}{t_{1} } =\frac{16.09}{3.7} =4.35rad/s^{2} (clockwise)

\alpha _{B}=(\frac{0.15}{0.2} )^{3} *4.35=1.84rad/s^{2} (clockwise)

You might be interested in
If your body were a tall building, your skeleton would be
n200080 [17]
The Beams And Joints That Hold It .
4 0
3 years ago
Read 2 more answers
Plants need to....................synthesize
koban [17]

Answer:

nitrogen

Explanation:

because I also had this in exam and I was correct

5 0
3 years ago
A 77.0−kg short-track ice skater is racing at a speed of 12.6 m/s when he falls down and slides across the ice into a padded wal
sukhopar [10]

Answer:

-6112.26  J

Explanation:

The initial kinetic energy, KE_i is given by

KE_i=0.5mv_1^{2} where m is the mass of a body and v_i is the initial velocity

The final kinetic energy, KE_f is given by

KE_f=0.5mv_f^{2} where v_f is the final velocity

Change in kinetic energy, \triangle KE is given by

\triangle KE=KE_f-KE_i=0.5mv_f^{2}-0.5mv_1^{2}=0.5m(v_f^{2}-v_i^{2})

Since the skater finally comes to rest, the final velocity is zero. Substituting 0 for v_f and 12.6 m/s for v_i and 77 Kg for m we obtain

\triangle KE=0.5*77*0^{2}-0.5*77*(0^{2}-12.6^{2})=-6112.26 J

From work energy theorem, work done by a force is equal to the change in kinetic energy hence for this case work done equals <u>-6112.26  J</u>

3 0
3 years ago
A student uses a spring loaded launcher to launch a marble vertically in the air. The mass of the marble is
GarryVolchara [31]

Answer:

Part a)

When spring compressed by 2 cm

H = 1.47 m

Part b)

When spring is compressed by 4 cm

H = 5.94 m

Explanation:

Part a)

As we know that the spring is compressed and released

so here spring potential energy is converted into gravitational potential energy at its maximum height

So we will have

\frac{1}{2}kx^2 = mg(H + x)

0.5(220)(0.02)^2 = 0.003(9.81)(H + 0.02)

so we have

H = 1.47 m

Part b)

Similarly when spring is compressed by 4 cm

then we have

\frac{1}{2}kx^2 = mg(H + x)

0.5(220)(0.04)^2 = 0.003(9.81)(H + 0.04)

so we have

H = 5.94 m

8 0
4 years ago
Use a(t) = -32 feet per second per second as the acceleration due to gravity. (Neglect air resistance.) -With what initial veloc
Kitty [74]

Answer:

u= 187.61 ft/s

Explanation:

Given that

g= - 32 ft/s²

The maximum height ,h= 550 ft

Lets take the initial velocity = u ft/s

We know that

v²=u² + 2 g s

v=final speed ,u=initial speed ,s=height

When the object reach at the maximum height then the final speed of the object will become zero.

That is why

u²= 2 x 32 x 550

u²= 35200

u= 187.61 ft/s

That is why the initial speed will be 187.61 ft/s

7 0
3 years ago
Read 2 more answers
Other questions:
  • What is the answer in number 3?
    14·2 answers
  • What is the displacement of a spring if it has a spring constant of 10 N/m, and a force of 2.5 N is applied?
    6·2 answers
  • Why are two balls connected by a spring a good model for two atoms connected by a chemical bond?
    10·1 answer
  • Saul converts 2.392 hectoliters to liters. What should his new number be? 0.02392 0.2392 239.2 2392
    13·2 answers
  • Which part of the manufacturing process involves heating and rolling blocks of steel into flat sheets and bars?
    13·1 answer
  • Plz help urgent <br> i will give brainliest
    8·1 answer
  • A string roller of scissors is an example of both lever and wedge​
    11·1 answer
  • A 12kg cheetah accelerates 24 m/s". What is the force the cheetah needed to run?
    7·1 answer
  • How can I start studying physics myself? Please be specific, such as recommended series or books. BOUNTIFUL REWARD FOR PROPER AN
    12·1 answer
  • 2. The weight of a boat without load is 12 000 N and the volume of the immersed portion of the boat is 5.0 m³. [ Density of sea
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!