Answer:
k = 0.0306 min-1
Explanation:
The table is given as;
Time, Concentration
0 1.48
5 1.27
10 0.98
15 0.84
The integrated rate law for a first order reaction is given as;
ln [A] = -kt + ln [Ao]
where;
[A] = Final Concentration
[Ao] = Initial Concentration
k = rate constant
t = time
In the table, taking the first two sets of values;
t = 5
k = ?
[Ao] = 1.48
[A] = 1.27
Inserting into the equation;
ln(1.27) = - k (5) + ln(1.48)
ln(1.27) - ln(1.48) = -5k
-0.1530 = -5k
k = -0.1530 / -5
k = 0.0306 min-1
Answer:
E = 3.77×10⁻¹⁹ J
Explanation:
Given data:
Wavelength of absorption line = 527 nm (527×10⁻⁹m)
Energy of absorption line = ?
Solution:
Formula:
E = hc/λ
h = planck's constant = 6.63×10⁻³⁴ Js
c = speed of wave = 3×10⁸ m/s
by putting values,
E = 6.63×10⁻³⁴ Js × 3×10⁸ m/s / 527×10⁻⁹m
E = 19.89×10⁻²⁶ Jm /527×10⁻⁹m
E = 0.0377×10⁻¹⁷ J
E = 3.77×10⁻¹⁹ J
109/8.56=12.7
50+12.7
V=62.7
Mass= Volume x Density so i divided the mass and density to get the volume. and afterwards i would just add it to the mass to get my final answer
C. Sulfur and oxygen (non metals) forms a covalent bond while the magnesium (a metal) will react with both non metals to form an ionic bond
<u>Answer:</u>
<u>Plasmas of great interest to scientists or manufacturers as</u>
- Plasma is electrically charged gases that contain considerable charged particles that can change the behavior of the substance.
<u>Current uses of plasmas:</u>
- First, it is used to make semiconductors for different types of electronic equipment
- Secondly, they're used in making transmitters for high-temperature films.
<u>Way scientists and engineers hope to use plasmas in the future:</u>
- The scientists are hoping to use plasma in the future to get rid of all hazardous wastes through a process called plasma gasification.