1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodka [1.7K]
3 years ago
9

A loop of wire is at the edge of a region of space containing a uniform magnetic field B. The plane of the loop is perpendicular

to the magnetic field. Now the loop is pulled out of this region in such a way that the area A of the coil inside the magnetic field region is decreasing at the constant rate c. That is, dA/dt=−c, with c>0.Required:a. The induced emf in the loop is measuredto be V. What is the magnitude B of the magnetic field that the loop was in?b. For the case of a square loop of sidelength L being pulled out of the magneticfield with constant speed v, What is the rate of change of area c= -dA/dt

Physics
1 answer:
il63 [147K]3 years ago
8 0

Answer:

The question is not clear enough. So i have attached a copy of the correct question.

A) B = V/c

B) c = Lv

Explanation:

A) we know that formula for magnetic flux is;

Φ = BA

Where B is magnetic field and A is area

Now,

Let's differentiate with B being a constant;

dΦ/dt = B•dA/dt

From faradays law, the EMF induced is given as;

E = -dΦ/dt

However, we want to express it in terms of V and E.M.F is also known as potential difference or Voltage.

Thus, V = -dΦ/dt

Thus, we can now say that;

-V = B•dA/dt

Now from the question, we are told that dA/dt = - c

Thus;

-V = B•-c

So, V = Bc

Thus, B = V/c

B) according to Faraday's Law or Lorentz Force Law, an electromotive force, emf, will be induced between the two ends of the sidelength:

Thus;

E =LvB or can be written as; V = LvB

Where;

V is EMF

L is length of bar

v is velocity

From the first solution, we saw that;

V = Bc

Thus, equating both of the equations, we have;

Bc = LvB

B will cancel out to give;

c = Lv

Explanation:

You might be interested in
A diver jumps off a cliff 50m high and needs to clear the rock that extend outward 5.0m from the base of the cliff. The diver ju
igor_vitrenko [27]

Answer:

He should run at least at 1.5 m/s

The diver will enter the water at an angle of 87° below the horizontal.

Explanation:

Hi there!

The position and velocity of the diver are given by the following vectors:

r = (x0 + v0x · t, y0 + v0y · t + 1/2 · g · t²)

v = (v0x, v0y + g · t)

Where:

r = position vector at time t

x0 = initial horizontal position

v0x = initial horizontal velocity

t = time

y0 = initial vertical position

v0y = initial vertical velocity

g = acceleration due to gravity (-9.8 m/s² considering the  upward direction as positive)

v = velocity vector at time t

Please, see the attached figure for a description of the problem. Notice that the origin of the frame of reference is located at the jumping point so that x0 and y0 = 0.

We know that, to clear the rocks, the position vector r final (see figure) should be:

r final = ( > 5.0 m, -50 m)

So let´s find first at which time the y-component of the vector r final is - 50 m:

y = y0 + v0y · t + 1/2 · g · t²

-50 m = 2.1 m/s · t - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 2.1 m/s · t + 50 m

Solving the quadratic equation

t = 3.4 s

Now, we can calculate the initial horizontal velocity using the equation of the x-component of the position vector knowing that at t =3.4 the horizontal component should be greater than 5.0 m:

x = x0 + v0x · t      (x0 = 0)

5.0 m < v0x · 3.4 s

v0x > 5.0 m / 3.4 s

v0x > 1.5 m/s

The initial horizontal velocity should be greater than 1.5 m/s

To find the angle at which the diver enters the water, we have to find the magnitude of the final velocity (vector vf in the figure). We already know the magnitude of the x-component of the vector vf, since the horizontal velocity is constant. So:

vfx > 1.5 m/s

Now, let´s calculate vfy:

vfy = v0y + g · t

vfy = 2.1 m/s - 9.8 m/s² · 3.4 s

vfy = -31 m/s

Let´s calculate the minimum magnitude that the final velocity will have if the diver safely clears the rocks. Let´s consider the smallest value allowed for vfx: 1.5 m/s. Then:

|v| = \sqrt{(1.5 m/s)^{2} + (31m/s)^{2}} = 31 m/s

Then the final velocity of the diver will be greater or equal than 31 m/s.

To find the angle, we have to use trigonometry. Notice in the figure that the vectors vf, vfx and vy form a right triangle in which vf is the hypotenuse, vfx is the adjacent side and vfy is the opposite side to the angle. Then:

cos θ = adjacent / hypotenuse = vfx / vf = 1.5 m/s / 31 m/s

θ = 87°

The diver will enter the water at an angle of 87° below the horizontal.

8 0
3 years ago
How can i find the acceleration?(rope and grinder have no weight) *** sorry for my english
Finger [1]
The main formula to be used here is

                       Force = (mass) x (acceleration).

We'll get to work in just a second.  But first, I must confess to you that I see
two things happening here, and I only know how to handle one of them.  So
my answer will be incomplete, but I believe it will be more reliable than the
first answer that was previously offered here.

On the <u>right</u> side ... where the 2 kg and the 3 kg are hanging over the same
pulley, those weights are not balanced, so the 3 kg will pull the 2kg down, with
some acceleration.  I don't know what to do with that, because . . .

At the <em>same time</em>, both of those will be pulled <u>up</u> by the 10 kg on the other side
of the upper pulley.

I think I can handle the 10 kg, and work out the acceleration that IT has.

Let's look at only the forces on the 10 kg:

-- The force of gravity is pulling it down, with the whatever the weight of 10 kg is.

-- At the same time, the rope is pulling it UP, with whatever the weight of 5 kg is ...
that's the weight of the two smaller blocks on the other end of the rope. 

So, the net force on the 10 kg is the weight of (10 - 5) = 5 kg, downward.

The weight of 5 kg is (mass) x (gravity) = (5 x 9.8) = 49 newtons.

The acceleration of 10 kg, with 49 newtons of force on it, is

     Acceleration = (force) / (mass) = 49/10 = <em>4.9 meters per second²</em>
7 0
3 years ago
If ball C is 3 times the volume of ball D and ball D has 1/3 the mass of ball C, which has the greater density?
Alex Ar [27]

Answer:

They have same density

Explanation:

The density of an object is defined as

d=\frac{m}{V}

where

m is the mass of the object

V is its volume

Let's call m_c and V_c the mass and the volume of ball C, respectively. Therefore, the density of ball C is:

d_c = \frac{m_c}{V_c}

We know that the volume of ball C is 3 times the volume of ball D, so

V_c = 3 V_d \rightarrow V_d = \frac{V_c}{3}

And we also know that ball D has 1/3 the mass of ball C:

m_d = \frac{m_c}{3}

So, the density of ball D is:

v_d = \frac{m_d}{V_d}=\frac{m_c/3}{V_d/3}=\frac{m_c}{V_c}=d_c

Therefore, the two balls have same density.

6 0
3 years ago
Two thousand two hundred frequent business travelers are asked which midwestern city they prefer: Indianapolis, Saint Louis, Chi
drek231 [11]
Frequency Table
City                       Frequency
Indianapolis              124
Saint Louis                416
Chicago                  1,225
Milwaukee                 435

Relative Frequency Table
City                            Relative Frequency
Indianapolis              124/2200 = 31/550
Saint Louis                416/2200 = 52/275
Chicago                  1,225/2200 = 49/88
Milwaukee                 435/2200 = 87/440
5 0
3 years ago
. What is the energy of an object if the height is 20 m and the mass is 2kg?
navik [9.2K]
The kinetic energy of the object is 392 Joules.
6 0
3 years ago
Other questions:
  • The frequency of a wave is 1) A) measured in cycles per second. B) measured in hertz (Hz). C) the number of peaks passing by any
    9·1 answer
  • Two 10-cm-diameter charged rings face each other, 25.0cm apart. Both rings are charged to +20.0nC. What is the electric field st
    11·1 answer
  • An airplane flies due north at 225 km/h relative to the air. There is a wind blowing at 60 km/h to the northeast relative to the
    6·1 answer
  • What does it depend on
    11·1 answer
  • Is the process of introducing a non blood fluid into the blood​
    11·1 answer
  • Discuss how the primary colors of light differ from the primary pigment colors
    11·1 answer
  • you walk 6 block east, 2 blocks north, 3 blocks west and then 2 blocks north. the total distance you travel is blocks
    14·1 answer
  • What is the speed of a runner that runs 400m in 48.42 seconds?
    10·1 answer
  • When the motion of one or both of the particles is at an angle to the line of impact, the impact is said to be ________
    7·1 answer
  • Question 11 (1 point)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!