Answer:
Range formula: R = v^2 sin (2 theta) / g
If theta = 69 deg and v = 15.1
R = 15.1^2 sin 138 / 9,8 = 15.6 m
sin 138 = .669 = sin 42
So a snowball thrown at 21 deg will travel
R = 15.1 * .669^2 / 9.8 = 15.6 m
The second snowball can be thrown at 21 deg to travel the same distance
Vx = V cos theta = 15.1 * cos 69 = 5.41 first snowball
t1 = 15.6 / 5.41 = 2.88 sec
Vx = V cos theta = 15.1 cos 21 = 14.1 m/s
t2 = 15.6 / 14.1 = 1.11 sec
Difference = t1 - t2 = 1.77 sec time delay for second snowball
Answer:
it right. Its The Iron Nail i just did it and i got correct (:
Explanation:
Fossil fuel power plants burn carbon fuels such coal, oil or gas to generate steam that drives large turbines that produce electricity.
Answer: True? since it has a small hole it would depend on how far away the camera is to the object.
Answer:
See the answers below
Explanation:
In this problem, we must be clear about the concept of weight. Weight is defined as the product of mass by gravitational acceleration.
We must be clear that the mass is always preserved, that is, the mass of 15 [kg] will always be the same regardless of the planet where they are.

where:
W = weight [N] (units of Newtons)
m = mass = 15 [kg]
g = gravity acceleration [m/s²]
Since we have 9 places with different gravitational acceleration, then we calculate the weight in each of these nine places.
<u>Mercury</u>
<u />
<u />
<u>Venus</u>
<u />
<u />
<u>Moon</u>
<u />
<u />
<u>Mars</u>
![w_{mars}=15*3.7\\w_{mars}=55.5 [N]](https://tex.z-dn.net/?f=w_%7Bmars%7D%3D15%2A3.7%5C%5Cw_%7Bmars%7D%3D55.5%20%5BN%5D)
<u>Jupiter</u>
<u />
<u />
<u>Saturn</u>
<u />
<u />
<u>Uranus</u>
<u />
<u />
<u>Neptune</u>
<u />
<u />
<u>Pluto</u>
<u />
<u />