Answer : The molal freezing point depression constant of X is 
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of X liquid (solvent) = 450.0 g
Molar mass of urea = 60 g/mole
Formula used :

where,
= change in freezing point
= freezing point of solution = 
= freezing point of liquid X= 
i = Van't Hoff factor = 1 (for non-electrolyte)
= molal freezing point depression constant of X = ?
m = molality
Now put all the given values in this formula, we get
![[0.4-(-0.5)]^oC=1\times k_f\times \frac{5.90g\times 1000}{60g/mol\times 450.0g}](https://tex.z-dn.net/?f=%5B0.4-%28-0.5%29%5D%5EoC%3D1%5Ctimes%20k_f%5Ctimes%20%5Cfrac%7B5.90g%5Ctimes%201000%7D%7B60g%2Fmol%5Ctimes%20450.0g%7D)

Therefore, the molal freezing point depression constant of X is 
I believe you would just put a 2 in front of NH3 and keep the other ones as 1
N=m/M
n=118/58.93=2
Answer: 2 moles
Answer:
New volume of gas = 95.93 ml (Approx)
Explanation:
Given:
Old volume of gas = 86 ml
Old temperature = 30°C = 30 + 273 = 303 K
New temperature = 65°C = 65 + 273 = 338 K
Find:
New volume of gas
Computation:
V1T2 = V2T1
(86)(338) = (V2)(303)
New volume of gas = 95.93 ml (Approx)
The molar mass of citric acid (c6h8o7) is 192.124g/mol
The molar mass of baking soda (nahco3) is 84.007g/mol
The molar mass of a chemical compound is defined as the mass of a sample of that compound divided by the amount of substance in that sample and is measured in moles. Molar mass is a mass property, not a molecular property of a substance.
Molar mass is the mass of 1 mole of the sample. To find the molar mass, add up the atomic masses (atomic weights) of all the atoms in the molecule. Use the masses listed in the periodic table or atomic weight table to determine the atomic mass of each element.
Learn more about molar mass here:brainly.com/question/15476873
#SPJ1