Answer:
<em>Infrared telescope and camera</em>
<em></em>
Explanation:
An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.
Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, <em>Infrared images is better used, since they are able to penetrate the surrounding clouds of dust,</em> and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.
Answer:
5.024 years
Explanation:
T1 = 1 year
r1 = 150 million km
r2 = 440 million km
let the period of asteroid orbit is T2.
Use Kepler's third law
T² ∝ r³
So,


T2 = 5.024 years
Thus, the period of the asteroid's orbit is 5.024 years.
Answer:
my method is guessing it works 50% of the time :)
Explanation:
Answer:
<u>Absolute </u><u>zero </u><u>temperature</u> is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvins.
Answer:
Physics is a branch of science. It is one of the most fundamental scientific disciplines. The main goal of physics is to explain how things move in space and time and understand how the universe behaves. It studies matter, forces and their effects. The word physics comes from the Greek