All solutions are mixtures of two or more substances, but unless the mixture has a homogeneous distribution of solutes in the solvent, then the mixture is not a solution. Therefore, all mixtures are not solutions.
They are different by a phase shift of pi/2
<span>One mole of a substance contains Avogadro's number of atoms/molecules/the like. This would mean that all of the items described would have approximately 6.022 * 10^23 atoms, even though their masses would differ. This would be due to the molar mass of each substance being different because of the constituent elements in the substance.</span>
Answer:
D. Nuclei with small masses combine to form nuclei with larger masses.
B. A small amount of mass in the nuclei that combine is converted to energy
Explanation:
A nuclear fusion, in contrary to fission, is the process by which the nuclei of two atoms combine to form a much larger atom with a large nuclei. Likewise, during a fusion reaction, a large amount of energy is released from the small amount of mass in the nuclei (two) that combines.
According to this question, the following are true of a fusion reaction:
- Nuclei with small masses combine to form nuclei with larger masses.
- A small amount of mass in the nuclei that combine is converted to enormous energy.
Answer: The bond between boron and hydrogen in boron trihydride is covalent bond.
Explanation:
The type of bonding between the atoms forming a compound is determined by using the electronegativity difference between the atoms. According to the pauling's electronegativity rule:
- If
, then the bond is non-polar. - If
, then the bond will be covalent. - If
, then the bond will be ionic.
We are given:
Electronegativity for boron = 2.0
Electronegativity for hydrogen = 2.1

As,
is less than 1.7 and not equal to 0. Hence, the bond between boron and hydrogen is covalent bond.