Answer:
squeeze those bunz and slide that dong clean oh yeah baby!!!
Explanation:
licky lick hoty hoty
Answer:
516.77 grams of Argon gas is present
Explanation:
Using the gas formula
PV = nRT
number of moles (n) = mass / molar weight or mass
P = pressure = 3.4 atm
V = volume = 72 L
R = gas constant = 0.082 L atm mol^-1 K^-1
T = temperature = 225 K
MM = molar mass of Ar = 38.984 g/mol
PV = mRT/ MM
m = PV MM / RT
m = 3.4 * 72 * 38.948 / 0.082 * 225
m = 9534.4704 / 18.45
m = 516.77 grams
the mass of Ar gas you have is 516.77 grams.
Answer:
A
Explanation:
I looked up aromatic hydrocarbon and this one looks like a replica of benzene
Answer:
A jump occurs when a core electron is removed.
Explanation:
A jump in ionization energy occurs when a core electron is removed. A large jump in the ionization energy easily be seen from the electronic configuration of an element.
For Beryllium, the electronic configuration of is 1s2 2s2.
There are two valence electrons in the outermost shell hence the ionization energy data for beryllium will show a sudden jump or increase in going from the second to the third ionization energy owing to the removal of a core electron
The electronic configuration for Nitrogen is 1s2 2s2 2p3. Five valence electrons are found in the outermost shell so the ionization energy data for nitrogen will show a sudden jump or increase in going from the fifth to sixth ionization energy because of the removal of a core electron
The electronic configuration of oxygen is 1s2 2s2 2p4. There are six valence electrons hence ionization energy for oxygen atom will show a sudden jump or increase in going from the sixth to the seventh ionization energy because of the removal of a core electron
The electronic configuration of Lithium is 1s2 2s1
There is one valence electron in its outermost shell so its ionization energy data will show a sudden jump or increase in going from the first to the second ionization energy because of the removal of a core electron.
Explanation:
Tollens' reagent is prepared by using two-step process : -
Step 1:
Silver oxide is formed by mixing aqueous silver nitrate with base like sodium hydroxide. The reaction is shown below as:

Step 2
Ammonia solution is drop-wise added until all the silver oxide dissolves to form the reagent. The reaction is shown below as:
