Don't know if this is a True/False questions but that is true
Answer:
h’ = 1/9 h
Explanation:
This exercise must be solved in parts:
* Let's start by finding the speed of sphere B at the lowest point, let's use the concepts of conservation of energy
starting point. Higher
Em₀ = U = m g h
final point. Lower, just before the crash
Em_f = K = ½ m
energy is conserved
Em₀ = Em_f
m g h = ½ m v²
v_b =
* Now let's analyze the collision of the two spheres. We form a system formed by the two spheres, therefore the forces during the collision are internal and the moment is conserved
initial instant. Just before the crash
p₀ = 2m 0 + m v_b
final instant. Right after the crash
p_f = (2m + m) v
the moment is preserved
p₀ = p_f
m v_b = 3m v
v = v_b / 3
v = ⅓ 
* finally we analyze the movement after the crash. Let's use the conservation of energy to the system formed by the two spheres stuck together
Starting point. Lower
Em₀ = K = ½ 3m v²
Final point. Higher
Em_f = U = (3m) g h'
Em₀ = Em_f
½ 3m v² = 3m g h’
we substitute
h’=
h’ =
h’ = 1/9 h
Answer: B. The gravitational field strength of Planet X is Wx/m.
Explanation:
Weight is a force, and as we know by the second Newton's law:
F = m*a
Force equals mass times acceleration.
Then if the weight is:
Wx, and the mass is m, we have the equation:
Wx = m*a
Where in this case, a is the gravitational field strength.
Then, isolating a in that equation we get:
Wx/m = a
Then the correct option is:
B. The gravitational field strength of Planet X is Wx/m.
<span>The component most affected by the collisions is vertical. The ball's vertical will either decrease or increase due to the collision. If the velocity is high during the collsion the ball's vertical will likely be higher and if the ball's velocity is low the vertical will be as well.</span>