Answer:
1.5 u
Explanation:
The range equation is:
R = u² sin(2θ) / g
When u = v, R = 2.25 R.
2.25 R = v² sin(2θ) / g
2.25 u² sin(2θ) / g = v² sin(2θ) / g
2.25 u² = v²
1.5 u = v
Answer:
3.83×10¯⁴ N
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = +2.4x10¯⁸ C
Charge 2 (q₂) = +1.8x10¯⁶ C
Distance apart (r) = 1.008 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
The magnitude of the electrical force acting between the two charges can be obtained as follow:
F = Kq₁q₂ / r²
F = 9×10⁹ × 2.4x10¯⁸ × 1.8x10¯⁶ / (1.008)²
F = 0.0003888 / 1.016064
F = 3.83×10¯⁴ N
Thus the magnitude of the electrical force acting between the two charges is 3.83×10¯⁴ N
At the center of a 50 m diameter circular ice rink, if a 77 kg skater traveling at 2.3
m/s and then collides with a 63 kg skates traveling at 3.7 m/s. This is how
long it will take them to glide to the edge of the rink:
Speed after the collision= √{[77(2.3)77^2]
+ [63(3.7)^2]} / (77+63)=2.09 m/s
For them to be able to get to the edge
which is 50 m away it will take them 23.9
seconds.
Input energy is: 200 joule
Output energy is: 100 joule
100/200*100=%50 efficiency
We have millions of alveoli under our lungs, they diffuse oxygen molecules in our blood, then they get transported to every organ of our body through our Heart
Hope this helps!