They can do the experiment more than once and make sure they follow steps right like in a experiment
Waves transfer energy but not matter
Answer:
Explanation:
We shall apply the formula for velocity in case of elastic collision which is given below
v₁ = (m₁ - m₂)u₁ / (m₁ + m₂) + 2m₂u₂ / (m₁ + m₂)
m₁ and u₁ is mass and velocity of first object , m₂ and u₂ is mass and velocity of second object before collision and v₁ is velocity of first velocity after collision.
Here u₁ = 22 cm /s , u₂ = - 14 cm /s . m₁ = 7.7 gm , m₂ = 18 gm
v₁ = ( 7.7 - 18 ) x 22 / ( 7.7 + 18 ) + 2 x 18 x - 14 / ( 7.7 + 18 )
= - 8.817 - 19.6
= - 28.4 cm / s
Answer:
they were hunter gatherers
Explanation:
An object distance is
presented as s = 5f and we know that the mirror equation relates the image
distance to the object distance and the focal length.
The mirror equation is
1/f = 1/s + 1/s’ where the variable f stands for
the focal length of the mirror. Variable (s)
represents the distance between the mirror surface and the object and the
variable <span>(s’) represents the distance between the mirror surface and
the image. </span>
In addition, a concave mirror
will have a positive focal length (f) and a convex mirror will have a negative
focal length (f).
Now, we then have 1/f = 1/5f
+ 1/s’ which is s’ = 5f/4
Then we get the magnification
ratio that expresses the size or amount of magnification or reduction of the
object or image and to get the magnification, we use this equation: M= s’/s
M= 5f/4x5f
s’ = 1/4s
Therefore, the image height
is one fourth of the object height