1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alekssr [168]
3 years ago
15

What are materials engineers trying to discover when they study different materials?

Engineering
2 answers:
cricket20 [7]3 years ago
6 0
What he said ^^^^^^^^^^^^^^^^^^^^^^^^^
coldgirl [10]3 years ago
5 0
What do materials science and engineering graduates do?
Almost two-thirds of materials science graduates are in employment six months after graduation.

The skills developed during a materials science degree allow graduates enter a range of sectors, including working as engineering professionals and in design and marketing roles.

Destination Percentage
Employed 60.4
Further study 24.5
Working and studying 5.1
Unemployed 4
Other 6.1
Graduate destinations for materials science and engineering
Type of work Percentage
Engineering and building 23.9
Marketing, PR and sales 11.9
Business, HR and financial 11.7
Technicians and other professionals 10
Other 42.5
You might be interested in
A completely reversible heat pump produces heat ata rate of 300 kW to warm a house maintained at 24°C. Theexterior air, which is
Triss [41]

Answer:

Change in entropy S = 0.061

Second law of thermodynamics is satisfied since there is an increase in entropy

Explanation:

Heat Q = 300 kW

T2 = 24°C = 297 K

T1 = 7°C = 280 K

Change in entropy =

S = Q(1/T1 - 1/T2)

= 300(1/280 - 1/297) = 0.061

There is a positive increase in entropy so the second law is satisfied.

6 0
3 years ago
2. A counter flow tube-shell heat exchanger is used to heat a cold water stream from 18 to 78oC at a flow rate of 1 kg/s. Heatin
Anastaziya [24]

Answer:

a) L = 220\,m, b) U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

Explanation:

a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

c_{p,c} = 4.186\,\frac{kJ}{kg\cdot ^{\textdegree}C}

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

\epsilon = \frac{1-e^{-NTU\cdot(1-c)}}{1-c\cdot e^{-NTU\cdot (1-c)}}

The capacity ratio is:

c = \frac{C_{min}}{C_{max}}

c = \frac{(1\,\frac{kg}{s} )\cdot(4.186\,\frac{kW}{kg^{\textdegree}C} )}{(1.8\,\frac{kg}{s} )\cdot(4.30\,\frac{kW}{kg^{\textdegree}C} )}

c = 0.541

Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that NTU = 2.5. The efectiveness of the heat exchanger is:

\epsilon = \frac{1-e^{-(2.5)\cdot(1-0.541)}}{1-(2.5)\cdot e^{-(2.5)\cdot (1-0.541)}}

\epsilon \approx 0.824

The real heat transfer rate is:

\dot Q = \epsilon \cdot \dot Q_{max}

\dot Q = \epsilon \cdot C_{min}\cdot (T_{h,in}-T_{c,in})

\dot Q = (0.824)\cdot (4.186\,\frac{kW}{^{\textdegree}C} )\cdot (160^{\textdegree}C-18^{\textdegree}C)

\dot Q = 489.795\,kW

The exit temperature of the hot fluid is:

\dot Q = \dot m_{h}\cdot c_{p,h}\cdot (T_{h,in}-T_{h,out})

T_{h,out} = T_{h,in} - \frac{\dot Q}{\dot m_{h}\cdot c_{p,h}}

T_{h,out} = 160^{\textdegree}C + \frac{489.795\,kW}{(7.74\,\frac{kW}{^{\textdegree}C} )}

T_{h,out} = 96.719^{\textdegree}C

The log mean temperature difference is determined herein:

\Delta T_{lm} = \frac{(T_{h,in}-T_{c, out})-(T_{h,out}-T_{c,in})}{\ln\frac{T_{h,in}-T_{c, out}}{T_{h,out}-T_{c,in}} }

\Delta T_{lm} = \frac{(160^{\textdegree}C-78^{\textdegree}C)-(96.719^{\textdegree}C-18^{\textdegree}C)}{\ln\frac{160^{\textdegree}C-78^{\textdegree}C}{96.719^{\textdegree}C-18^{\textdegree}C} }

\Delta T_{lm} \approx 80.348^{\textdegree}C

The heat transfer surface area is:

A_{i} = \frac{\dot Q}{U_{i}\cdot \Delta T_{lm}}

A_{i} = \frac{489.795\,kW}{(0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C} )\cdot(80.348^{\textdegree}C) }

A_{i} = 9.676\,m^{2}

Length of a single pass counter flow heat exchanger is:

L =\frac{A_{i}}{\pi\cdot D_{i}}

L = \frac{9.676\,m^{2}}{\pi\cdot (0.014\,m)}

L = 220\,m

b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

5 0
3 years ago
Ethane (component A - C2H6) and hydrogen (component B) are fed to a differential reactor where they react on the catalyst to for
Fofino [41]
HELP ILL GIVE MOST BRAINLY AND 50 POINTS
HURRY PLEASE component c it is a compound so it will break
4 0
3 years ago
A specimen of a 4340 steel alloy with a plane strain fracture toughness of 54.8 Mpa root m is exposed to a stress of 1030 MPa. W
cupoosta [38]

Answer:

It will not  experience fracture when it is exposed to a stress of 1030 MPa.

Explanation:

Given

Klc = 54.8 MPa √m

a = 0.5 mm = 0.5*10⁻³m

Y = 1.0

This problem asks us to determine whether or not the 4340 steel alloy specimen will fracture when exposed to a stress of 1030 MPa, given the values of <em>KIc</em>, <em>Y</em>, and the largest value of <em>a</em> in the material. This requires that we solve for <em>σc</em> from the following equation:

<em>σc = KIc / (Y*√(π*a))</em>

Thus

σc = 54.8 MPa √m / (1.0*√(π*0.5*10⁻³m))

⇒ σc = 1382.67 MPa > 1030 MPa

Therefore, the fracture will not occur because this specimen can handle a stress of 1382.67 MPa before experience fracture.

3 0
3 years ago
Which of these materials are insulators? Select the THREE (3) that apply.
lubasha [3.4K]

Answer:

wool, rubber, and plastic

Explanation:

5 0
2 years ago
Other questions:
  • To ensure safe footing on penetrable surfaces,use?
    5·1 answer
  • With 64 KB of memory and 8 bits in each memory location, how wide should the address bus be to access all 64 KB of memory? (k =
    11·1 answer
  • Name 3 ways in which robots have improved since the Ebola outbreak.
    11·1 answer
  • Consider the circuit below where R1 = R4 = 5 Ohms, R2 = R3 = 10 Ohms, Vs1 = 9V, and Vs2 = 6V. Use superposition to solve for the
    15·1 answer
  • Write Python expressions using s1, s2, and s3 and operators and * that evaluate to: (a) 'ant bat cod'
    14·1 answer
  • 1. Asphyxiation is a hazard posed by Compressed Natural Gas (CNG) vehicles and can be detected when you notice
    7·1 answer
  • A vertical cylinder (Fig. P3.227) has a 61.18-kg piston locked with a pin, trapping 10 L of R-410a at 10◦C with 90% quality insi
    5·1 answer
  • A horse pulls a cart along a road with a force of 550 lbs. If the horse does 2,674,100 ftlbs of work by the time it stops, how f
    9·2 answers
  • Before taking off a plane travels at a speed of 1/4 km per second. The runaway is 5 km. How many seconds does it take the plane
    9·1 answer
  • Binary classification algorithm
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!