Answer:
Explanation: Clutch Plate.
Clutch Cover.
Clutch Bearing (Release bearing)
Release Fork (clutch fork)
Answer:
86701 Micrometers.
Explanation:
Multiply 0.86701 dm by 100,000 to get 86701 um.
Answer:
The critical length of surface flaw = 6.176 mm
Explanation:
Given data-
Plane strain fracture toughness Kc = 29.6 MPa-m1/2
Yield Strength = 545 MPa
Design stress. =0.3 × yield strength
= 0.3 × 545
= 163.5 MPa
Dimensionless parameter. Y = 1.3
The critical length of surface flaw is given by
= 1/pi.(Plane strain fracture toughness /Dimensionless parameter× Design Stress)^2
Now putting values in above equation we get,
= 1/3.14( 29.6 / 1.3 × 163.5)^2
=6.176 × 10^-3 m
=6.176 mm
Answer:
#include <iostream>
using namespace std;
void PrintPopcornTime(int bagOunces) {
if(bagOunces < 3){
cout << "Too small";
cout << endl;
}
else if(bagOunces > 10){
cout << "Too large";
cout << endl;
}
else{
cout << (6 * bagOunces) << " seconds" << endl;
}
}
int main() {
PrintPopcornTime(7);
return 0;
}
Explanation:
Using C++ to write the program. In line 1 we define the header "#include <iostream>" that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.