1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SIZIF [17.4K]
3 years ago
9

A baseball falling toward a player's glove gains _____ energy and loses _____ energy. A. potential; kinetic B. kinetic; potentia

l C. kinetic; chemical D. chemical; potential
Physics
2 answers:
Elodia [21]3 years ago
6 0

Answer:

Your answer is B

Explanation:

When a ball falls it is gaining kinetic energy because it gains speed as it falls.Since its gaining kinetic energy it loses potential energy so ur answer is B :) hope it helps

Zina [86]3 years ago
5 0

Answer:

I think it's B it can not be C or D because it has nothing to do with chemical energy

You might be interested in
A World War II bomber flies horizontally over level terrain, with a speed of 287 m/s relative to the ground and at an altitude o
Scorpion4ik [409]

Answer: 7.38 km

Explanation: The attachment shows the illustration diagram for the question.

The range of the bomb's motion as obtained from the equations of motion,

H = u(y) t + 0.5g(t^2)

U(y) = initial vertical component of velocity = 0 m/s

That means t = √(2H/g)

The horizontal distance covered, R,

R = u(x) t = u(x) √(2H/g)

Where u(x) = the initial horizontal component of the bomb's velocity = 287 m/s, H = vertical height at which the bomb was thrown = 3.24 km = 3240 m, g = acceleration due to gravity = 9.8 m/s2

R = 287 √(2×3240/9.8) = 7380 m = 7.38 km

6 0
3 years ago
Two charges are located in the x – y plane. If ????1=−4.10 nC and is located at (x=0.00 m,y=0.600 m) , and the second charge has
faust18 [17]

Answer:

The x-component of the electric field at the origin = -11.74 N/C.

The y-component of the electric field at the origin = 97.41 N/C.

Explanation:

<u>Given:</u>

  • Charge on first charged particle, q_1=-4.10\ nC=-4.10\times 10^{-9}\ C.
  • Charge on the second charged particle, q_2=3.80\ nC=3.80\times 10^{-9}\ C.
  • Position of the first charge = (x_1=0.00\ m,\ y_1=0.600\ m).
  • Position of the second charge = (x_2=1.50\ m,\ y_2=0.650\ m).

The electric field at a point due to a charge q at a point r distance away is given by

\vec E = \dfrac{kq}{|\vec r|^2}\ \hat r.

where,

  • k = Coulomb's constant, having value \rm 8.99\times 10^9\ Nm^2/C^2.
  • \vec r = position vector of the point where the electric field is to be found with respect to the position of the charge q.
  • \hat r = unit vector along \vec r.

The electric field at the origin due to first charge is given by

\vec E_1 = \dfrac{kq_1}{|\vec r_1|^2}\ \hat r_1.

\vec r_1 is the position vector of the origin with respect to the position of the first charge.

Assuming, \hat i,\ \hat j are the units vectors along x and y axes respectively.

\vec r_1=(0-x_1)\hat i+(0-y_1)\hat j\\=(0-0)\hat i+(0-0.6)\hat j\\=-0.6\hat j.\\\\|\vec r_1| = 0.6\ m.\\\hat r_1=\dfrac{\vec r_1}{|\vec r_1|}=\dfrac{0.6\ \hat j}{0.6}=-\hat j.

Using these values,

\vec E_1 = \dfrac{(8.99\times 10^9)\times (-4.10\times 10^{-9})}{(0.6)^2}\ (-\hat j)=1.025\times 10^2\ N/C\ \hat j.

The electric field at the origin due to the second charge is given by

\vec E_2 = \dfrac{kq_2}{|\vec r_2|^2}\ \hat r_2.

\vec r_2 is the position vector of the origin with respect to the position of the second charge.

\vec r_2=(0-x_2)\hat i+(0-y_2)\hat j\\=(0-1.50)\hat i+(0-0.650)\hat j\\=-1.5\hat i-0.65\hat j.\\\\|\vec r_2| = \sqrt{(-1.5)^2+(-0.65)^2}=1.635\ m.\\\hat r_2=\dfrac{\vec r_2}{|\vec r_2|}=\dfrac{-1.5\hat i-0.65\hat j}{1.634}=-0.918\ \hat i-0.398\hat j.

Using these values,

\vec E_2= \dfrac{(8.99\times 10^9)\times (3.80\times 10^{-9})}{(1.635)^2}(-0.918\ \hat i-0.398\hat j) =-11.74\ \hat i-5.09\ \hat j\  N/C.

The net electric field at the origin due to both the charges is given by

\vec E = \vec E_1+\vec E_2\\=(102.5\ \hat j)+(-11.74\ \hat i-5.09\ \hat j)\\=-11.74\ \hat i+(102.5-5.09)\hat j\\=(-11.74\ \hat i+97.41\ \hat j)\ N/C.

Thus,

x-component of the electric field at the origin = -11.74 N/C.

y-component of the electric field at the origin = 97.41 N/C.

4 0
3 years ago
003 (part 1 of 2) 10.0 points
drek231 [11]
Theists. You’re welcome
4 0
3 years ago
Which statement accurately describes impulse?<br> State corrrect ans
ser-zykov [4K]
Where are the statements at ?
5 0
3 years ago
WILL GIVE BRAINLIEST!!!!!!!!!!!! 50 PTS!!!!!!!!!!!!!!! 10 SCIENCE QUESTIONS!!!!
Jet001 [13]
1.b 2.c 3.a 4.b 5.d 6.a 7.a 9.idk 10.c hope thes helps have a nice day and God bless
8 0
3 years ago
Other questions:
  • True or False: The average speed of an object is always equal to the magnitude of the average velocity of the object. If False,
    7·1 answer
  • People who have color vision deficiency typically lack one or more of the three cones that are sensitive to a particular wavelen
    7·2 answers
  • Which listed property of alternating current is the MOST LIKELY reason it was chosen over direct current to provide electricity
    8·2 answers
  • Standing waves are produced by periodic waves of
    6·1 answer
  • Help someone :(((((((((((((((
    8·2 answers
  • A loaded flatbottom barge floats in fresh wa-ter. The bottom of the barge is 4.09 m belowthe water line. When the barge is empty
    11·1 answer
  • What happens to a species if the death rate is higher then the birthrate?
    11·1 answer
  • What type of diagrams are used to present the conditions that are available to control outputs based on inputs?
    14·2 answers
  • The range of a projectile is found by multiplying which two factors?
    13·1 answer
  • Jupiter has enough mass to make 318 earths. In contrast, uranus and neptune have only enough mass to make.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!