1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mezya [45]
2 years ago
7

A stone is dropped from the upper observation deck of a tower, 250 m above the ground. (Assume g = 9.8 m/s2.) (a) Find the dista

nce (in meters) of the stone above ground level at time t. h(t) = (b) How long does it take the stone to reach the ground? (Round your answer to two decimal places.) s (c) With what velocity does it strike the ground? (Round your answer to one decimal place.) m/s (d) If the stone is thrown downward with a speed of 2 m/s, how long does it take to reach the ground? (Round your answer to two decimal places.) s
Physics
1 answer:
Vitek1552 [10]2 years ago
6 0

(a) y(t)=250 - 4.9 t^2

For an object in free-fall, the vertical position at time t is given by:

y(t) = h + ut - \frac{1}{2}gt^2

where

h is the initial vertical position

u is the initial vertical velocity

g = 9.8 m/s^2 is the acceleration of gravity

t is the time

In this problem,

h = 250 m

u = 0 (the stone starts from rest)

So, the vertical position of the stone is given by

y(t) = 250 - \frac{1}{2}(9.8) t^2 = 250 - 4.9 t^2

(b) 7.14 s

The time it takes for the stone to reach the ground is the time t at which the vertical position of the stone becomes zero:

y(t) = 0

Which means

y(t) = h - \frac{1}{2}gt^2=0

So for the stone in the problem, we have

250 - 4.9 t^2 = 0

Solving for t, we find:

t=\sqrt{\frac{250}{4.9}}=7.14 s

(c) -70.0 m/s (downward)

The velocity of an object in free fall is given by the equation

v(t) = u - gt

where

u is the initial velocity

g = 9.8 m/s^2 is the acceleration of gravity

t is the time

Here we have

u = 0

So if we substitute t = 7.14 s, we find the velocity of the stone at the time it reaches the ground:

v=0-(9.8 m/s^2)(7.14 s)=-70.0 m/s

The negative sign means the direction of the velocity is downward.

(d) 6.94 s

In this situation, the stone is thrown downward with an initial speed of 2 m/s, so its initial velocity is

u = -2 m/s

So the equation of the vertical position of the stone in this case is

y(t) = h + ut - \frac{1}{2}gt^2=250 - 2t - 4.9 t^2

By solving the equation, we find the time t at which the stone reaches the ground.

We find two solutions:

t = -7.35 s

t = 6.94 s

The first solution is negative, so it has no physical meaning, therefore we discard it. So, the time it takes for the stone to reach the ground is:

t = 6.94 s

You might be interested in
A Man Moved first a Distance of 1000 m in 25 second and 2.5 km in 50 second along a in straight line?​
11Alexandr11 [23.1K]

Answer:

Average speed = 46.67 m/s

Explanation:

Given that the time taken in covering first 1000 m = 25 seconds.

The time taken in covering next 2.5 km = 50 seconds.

Total distance covered = 1000 m + 2500 m = 3500 m

Total time taken = 25+50=75 seconds

Average speed = Total distance covered / total time taken

= 3500/75 = 46.67 m/s

3 0
2 years ago
Why do you think spiders are disliked
SCORPION-xisa [38]

Answer:

it is called arachnophobia

Explanation:

most reason are they way they walk and jump and the people who know they have 4 eyes

Hope This Helped i Like Spiders (^^vv^^) (spider smiley face)

4 0
1 year ago
Read 2 more answers
The element carbon has 3 naturally occurring isotopes. About 99% of carbon isotopes are C-12, about 1% are C-13, and a tiny amou
mezya [45]
Average atomic mass of carbon is 12.01 amu
3 0
3 years ago
HELP ASAP <br> Describe when contact metamorphism occurs?
diamong [38]

Contact metamorphism occurs adjacent to igneous intrusions and results from high temperatures associated with the igneous intrusion. Since only a small area surrounding the intrusion is heated by the magma, metamorphism is restricted to the zone surrounding the intrusion, called a metamorphic or contact aureole

5 0
2 years ago
Read 2 more answers
In an attempt to reduce the extraordinarily long travel times for voyaging to distant stars, some people have suggested travelin
alexandr402 [8]

Answer:

a) v=0.999124c

b) E=7.566*10^{22}

c) E_a=760 times\ larger

Explanation:

From the question we are told that

Distance to Betelgeuse d_b=430ly

Mass of Rocket M_r=20000

Total Time in years traveled T_d=36years

Total energy used by the United States in the year 2000 E_{2000}=1.0*10^20

Generally the equation of speed of rocket v mathematically given by

v=\frac{2d}{\triangle t}

v=860ly/ \triangle t

where

\triangle t=\frac{\triangle t'}{(\sqrt{1-860/ \triangle t)^2}}

\triangle t=\frac{36}{(\sqrt{1-860/ \triangle t)^2}}

\triangle t=\sqrt{(860)^2+(36)^2}

\triangle t=860.7532

Therefore

v=\frac{860ly}{ 860.7532}

v=0.999124c

b)

Generally the equation of the energy E required to attain prior speed mathematically given by

E=\frac{1}{\sqrt{1-(v/c)^2} }-1(20000kg)(3*10^8m/s)^2

E=7.566*10^{22}

c)Generally the equation of the energy E_a required to accelerate the rocket mathematically given by

E_a=\frac{E}{E_{2000}}

E_a=\frac{7.566*10^{22}}{1.0*10^{20}}

E_a=760 times\ larger

8 0
3 years ago
Other questions:
  • If I had a six pulley system and a resistance of 24,000 N, how much effort would I need to lift it?
    7·1 answer
  • Explain how a volcanologist can piece together the history of a volcano by studying the rock that makes up the volcano
    10·1 answer
  • An object launched from Earth must attain a speed of 7,900 m/s to achieve a low orbit. What happens if the object’s maximum spee
    13·1 answer
  • You walk 6 m North and then 4 m south what distance did you travel? What is your displacement?
    10·1 answer
  • A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of
    13·1 answer
  • Which has more gravitational potential energy: a 300 N cat at a height of 6 meters or a 50 N bird at a height of 50 meters
    11·1 answer
  • What is the speed of a person that walk 400 meters in 1900 seconds
    5·1 answer
  • What is the frequency of a wave travelling at 45.45 m/s with a wavelength of 2 m?
    6·1 answer
  • Which of the following is an example of an immiscible liquid?
    15·2 answers
  • Two objects are placed on a scale so that it balances. One object weighs 5 N and is placed 0.5 m from the fulcrum of the scale.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!