<span>C. switching to cheaper fuel. Physical capital pertains to non-human asset. Under this type were the asset that use to process goods and services like machinery, buildings etc.</span>
Answer:
Most familiar are surface waves on water, but both sound and light travel as wavelike disturbances, and the motion of all subatomic particles exhibits wavelike properties
Explanation:
Answer:........... .. .....
Answer:
(a). 14.4 lbf/in^2.
(b). 27.8 in, AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.
Explanation:
So, from the question above we are given the following parameters which are going to help us in solving this particular Question;
=> The "barometer accidentally contains 6.5 inches of water on top of the mercury column (so there is also water vapor instead of a vacuum at the top of the barometer)"
=> "On a day when the temperature is 70oF, the mercury column height is 28.35 inches (corrected for thermal expansion)."
With these knowledge, let us delve right into the solution;
(a). The barometric pressure = water vapor pressure + acceleration due to gravity (ft/s^2) × water density(slug/ft^3) × {ft/12 in}^3 × [ height of mercury column + specific gravity of mercury × height of water column].
The barometric pressure= 0.363 + {(62.146) ÷ (12^3) × 390.6425}. = 14.4 lbf/in^2.
(b). { (13.55 × length of mercury) + 6.5 } × (62.15÷ 12^3) = 14.4 - 0.603.
Length of mercury = 27.8 in.
AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.
Gravitational force = G · (mass₁) · (mass₂) / (distance)
(distance²) = G · (mass₁) · (mass₂) / (Gravitational force)
G = 6.67 x 10⁻¹¹ n-m² / kg² (the "gravitational constant")
Distance² = (6.67 x 10⁻¹¹ n-m² / kg²) (28,500 kg) (2.2 x 10⁸ kg) / (39 N)
Distance² = (6.67 · 28,500 · 2.2 x 10⁻³ N-m²) / (39N)
Distance² = (418.209 N-m²) / (39N)
Distance² = 10.72 m²
<em>Distance = 3.275 meters</em>
An absurd scenario, but that's by golly what the math says with the numbers provided. I guess it's a teeny tiny planet orbiting 3.275 meters outside a teeny tiny black hole.