Answer: weight on Jupiter = 869.75 N
mass on Earth = mass on Jupiter = 35.5 Kg
Explanation:
W = mg
W = weight
m = mass
g = gravitational acceleration [ on the Earth, g₁ = 9,8 N/kg ]
On the Earth,
G₁ = m x g₁ = 347,9 N
On the Jupiter,
G₂ = mg₂
mass on the Earth = mass on the Jupiter !
m = G₁ : g = 347.9 N : 9,8 N/kg = 35.5 kg
G2 : G1 = 2.5
G₂ = 2,5 G₁ = 2,5 x 347.9 N = 869,75 N
A. logic, would be your answer i believe!
Split the operation in two parts. Part A) constant acceleration 58.8m/s^2, Part B) free fall.
Part A)
Height reached, y = a*[t^2] / 2 = 58.8 m/s^2 * [7.00 s]^2 / 2 = 1440.6 m
Now you need the final speed to use it as initial speed of the next part.
Vf = Vo + at = 0 + 58.8m/s^2 * 7.00 s = 411.6 m/s
Part B) Free fall
Maximum height, y max ==> Vf = 0
Vf = Vo - gt ==> t = [Vo - Vf]/g = 411.6 m/s / 9.8 m/s^2 = 42 s
ymax = yo + Vo*t - g[t^2] / 2
ymax = 1440.6 m + 411.6m/s * 42 s - 9.8m/s^2 * [42s]^2 /2
ymax = 1440.6 m + 17287.2m - 8643.6m = 10084.2 m
Answer: ymax = 10084.2m
The heart rate will likely decrease. As the cardiac muscle, or heart, gets stronger, it takes less effort to pump more blood. As a result, the heart will probably beat less, decreasing the heart rate. This is why athletes often have lower heart rates than the average person.