<span>Frequency x Wavelength = Speed of light
Now, speed of light = 3 x 10^5 km/s = 3 x 10^8 m/s = 3 x 10^10 cm/s
Frequency = speed/Wavelength
= (3 x 10^10)/(4.257 x 10^-7)
=7 x 10^16 Hz</span>
1)
p = 2.4 * 10^5 Pa
T = 18° C + 273.15 = 291.15 k
r = 0.25 m => V = [4/3]π(r^3) = [4/3]π(0.25m)^3 = 0.06545 m^3 = 65.45 L
Use ideal gas equation: pV = nRT => n = pV / RT = [2.4*10^5 Pa * 0.06545 m^3] / [8.31 J/k*mol * 291.15k] = 6.492 mol
Avogadro number = 1 mol = 6.022 * 10^23 atoms
Number of atoms = 6.492 mol * 6.022 *10^23 atom/mol = 39.097 * 10^23 atoms = 3.91 * 10^24 atoms
2) Double atoms => double volume
V2 / V1 = r2 ^3 / r1/3
2 = r2 ^3 / r1 ^3 => r2 ^3 = 2* r1 ^3
r2 = [∛2]r1
The factor is ∛2
Answer:


Explanation:
Height Of the watermelon when it is dropped is given as

time of fall under gravity

now if water melon start from rest then we have

acceleration due to gravity for watermelon

now we need to find the final speed of watermelon

so we will have


Answer:
769,048.28Joules
Explanation:
A parachutist of mass 56.0 kg jumps out of a balloon at a height of 1400 m and lands on the ground with a speed of 5.10 m/s. How much energy was lost to air friction during this bump
The energy lost due to friction is expressed using the formula;
Energy lost = Potential Energy + Kinetic Energy
Energy lost = mgh + 1/2mv²
m is the mass
g is the acceleration due to gravity
h is the height
v is the speed
Substitute the given values into the formula;
Energy lost = 56(9.8)(1400) + 1/2(56)(5.10)²
Energy lost = 768,320 + 728.28
Energy lost = 769,048.28Joules
<em>Hence the amount of energy that was lost to air friction during this jump is 769,048.28Joules</em>