The advantages that can be associated to
drawings and symbols over written descriptions in engineering design and prototyping process are;
Communicate design ideas as well as technical information to engineers.
Symbols and drawings can be universal which means it is easy to interpret any where by professionals.
- An engineering drawing serves as complex dimensional object and symbol use by engineer to communicate.
- Drawings and symbols makes it easier to communicate design ideas and technical information to engineers and and how the process will go.
Therefore, drawings and symbols is universal to all engineer unlike written one.
Learn more at:
brainly.com/question/20925313?referrer=searchResults
Answer:
Overall project duration
Explanation:
Scheduling can best be defined as the process used to determine a overall project duration.
Answer:
D
Explanation: She hopes to be able to make this, however she hasn't yet...therefore she is thinking of a concept and it's development
Explanation:
The end-use industries of thermochromic materials include packaging, printing & coating, medical, textile, industrial, and others. Printing & coating is the fastest-growing end-use industry of thermochromic materials owing to a significant increase in the demand for thermal paper for POS systems. The use of thermochromic materials is gaining momentum for interactive packaging that encourages consumers to take a product off the shelf and use it.
Answer:
0.5 kW
Explanation:
The given parameters are;
Volume of tank = 1 m³
Pressure of air entering tank = 1 bar
Temperature of air = 27°C = 300.15 K
Temperature after heating = 477 °C = 750.15 K
V₂ = 1 m³
P₁V₁/T₁ = P₂V₂/T₂
P₁ = P₂
V₁ = T₁×V₂/T₂ = 300.15 * 1 /750.15 = 0.4 m³

For ideal gas,
= 5/2×R = 5/2*0.287 = 0.7175 kJ
PV = NKT
N = PV/(KT) = 100000×1/(750.15×1.38×10⁻²³)
N = 9.66×10²⁴
Number of moles of air = 9.66×10²⁴/(6.02×10²³) = 16.05 moles
The average mass of one mole of air = 28.8 g
Therefore, the total mass = 28.8*16.05 = 462.135 g = 0.46 kg
∴ dQ = 0.46*0.7175*(750.15 - 300.15) = 149.211 kJ
The power input required = The rate of heat transfer = 149.211/(60*5)
The power input required = 0.49737 kW ≈ 0.5 kW.