1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
3 years ago
10

Which phase of matter do scientists ignore the forces of attraction between particles?

Physics
1 answer:
nordsb [41]3 years ago
5 0

Answer:

gas

Explanation:

because

intermolecular space is

so larger

You might be interested in
A rock thrown straight up takes 4.2 s to reach its maximum height what was its initial velocity
liubo4ka [24]

Consider the upward direction of motion as positive and downward direction of motion as negative.

a = acceleration due to gravity in downward direction = - 9.8 \frac{m }{s^{2}}

v₀ = initial velocity of rock in upward direction = ?

v = final velocity of rock at the highest point = 0 \frac{m }{s}

t = time to reach the maximum height = 4.2 sec

Using the kinematics equation

v = v₀ + a t

inserting the values

0 = v₀ + (- 9.8) (4.2)

v₀ = 41.2 \frac{m }{s}


8 0
3 years ago
an airplane flies at a speed of 100 m/s and starts to accelerate constantly at a rate of 50 m/s2. how fast is the plane flying a
mart [117]

Answer:

331.7m/s

Explanation:

Given parameters:

Initial velocity  = 100m/s

Acceleration  = 50m/s²

Distance  = 1km   = 1000m

Unknown:

Final velocity = ?

Solution:

To solve this problem, we have to apply the right motion equation shown below;

     v²  = u²  + 2aS

 v is the final velocity

 u is the initial velocity

 a is the acceleration

 S is the distance

 Now insert the parameters and solve;

     v² = 100² + (2 x 50 x 1000)

     v² = 110000

     v = √110000  = 331.7m/s

4 0
3 years ago
The sun's radiation has different wavelengths. the shorter is the radiation's wavelength, the weaker is the radiation's energy.
NeX [460]
It is false. Because the amount of energy carried in the wave is inversely related to the length of the waves wavelength. To correct the statement it should be that the shorter the radiation's wavelength the stronger is the radiation's energy.
7 0
3 years ago
A plane's average speed between two cities is 625 km/hr. If the trip takes 2.5 hours, how far does the plane fly?
Vladimir79 [104]

Answer: 1,562.5 Km

Explanation: If it takes one hour to travel 625 kilometers, then, in two and a half hours, you should travel 1,562.5 Kilometers because of 625x2.5=1562.5 kilometers

6 0
3 years ago
two point charges of 5*10^-19 C and 20*10^-19C are separated by a distance of 2m. at which point on the line joining them will h
Aneli [31]

Answer:

On that line segment between the two charges, at approximately 0.7\; \rm m away from the smaller charge (the one with a magnitude of 5 \times 10^{-19}\; \rm C,) and approximately 1.3\; \rm m from the larger charge (the one with a magnitude of 20 \times 10^{-19}\; \rm C.)

Explanation:

Each of the two point charges generate an electric field. These two fields overlap at all points in the space around the two point charges. At each point in that region, the actual electric field will be the sum of the field vectors of these two electric fields.

Let k denote the Coulomb constant, and let q denote the size of a point charge. At a distance of r away from the charge, the electric field due to this point charge will be:

\displaystyle E = \frac{k\, q}{r^2}.

At the point (or points) where the electric field is zero, the size of the net electrostatic force on any test charge should also be zero.

Consider a positive test charge placed on the line joining the two point charges in this question. Both of the two point charges here are positive. They will both repel the positive test charge regardless of the position of this test charge.

When the test charge is on the same side of both point charges, both point charges will push the test charge in the same direction. As a result, the two electric forces (due to the two point charges) will not balance each other, and the net electric force on the test charge will be non-zero.  

On the other hand, when the test charge is between the two point charges, the electric forces due to the two point charges will counteract each other. This force should be zero at some point in that region.

Keep in mind that the electric field at a point is zero only if the electric force on any test charge at that position is zero. Therefore, among the three sections, the line segment between the two point charges is the only place where the electric field could be zero.

Let q_1 = 5\times 10^{-19}\; \rm C and q_2 = 20 \times 10^{-19}\; \rm C. Assume that the electric field is zero at r meters to the right of the 5\times 10^{-19}\; \rm C point charge. That would be (2 - r) meters to the left of the 20 \times 10^{-19}\; \rm C point charge. (Since this point should be between the two point charges, 0 < r < 2.)

The electric field due to q_1 = 5\times 10^{-19}\; \rm C would have a magnitude of:

\displaystyle | E_1 | = \frac{k\cdot q_1}{r^2}.

The electric field due to q_2 = 20 \times 10^{-19}\; \rm C would have a magnitude of:

\displaystyle | E_2 | = \frac{k\cdot q_2}{(2 - r)^2}.

Note that at all point in this section, the two electric fields E_1 and E_2 will be acting in opposite directions. At the point where the two electric fields balance each other precisely, | E_1 | = | E_2 |. That's where the actual electric field is zero.

| E_1 | = | E_2 | means that \displaystyle \frac{k\cdot q_1}{r^2} = \frac{k\cdot q_2}{(2 - r)^2}.

Simplify this expression and solve for r:

\displaystyle q_1\, (2 - r)^2 - q_2 \, r^2 = 0.

\displaystyle 5\times (2 - r)^2 - 20\, r^2 = 0.

Either r = -2 or \displaystyle r = \frac{2}{3}\approx 0.67 will satisfy this equation. However, since this point (the point where the actual electric field is zero) should be between the two point charges, 0 < r < 2. Therefore, (-2) isn't a valid value for r in this context.

As a result, the electric field is zero at the point approximately 0.67\; \rm m away the 5\times 10^{-19}\; \rm C charge, and approximately 2 - 0.67 \approx 1.3\; \rm m away from the 20 \times 10^{-19}\; \rm C charge.

8 0
3 years ago
Other questions:
  • The children at the local park think the slide is too slow. There is too much fiction. What could you do to decrease the amount
    6·1 answer
  • A ray of light is moving from a material having a high indexof refraction into a material with a lower index of refraction.
    13·1 answer
  • 2. An ammeter registers 2.5 A of current in a wire that is connected to a 9.0 V
    11·1 answer
  • A ring of charge with uniform charge density is completely enclosed in a hollow donut shape. An exact copy of the ring is comple
    10·1 answer
  • Ch 31 HW Problem 31.63 10 of 15 Constants In an L-R-C series circuit, the source has a voltage amplitude of 116 V , R = 77.0 Ω ,
    13·1 answer
  • The wavelength of the light is 0.63 micrometers. How much of this length stays in 1 centimeter
    6·1 answer
  • A driver of a car traveling at 15.0 m/s applies the brakes, causing a uni- form acceleration of −2.0 m/s2 . How long does it tak
    6·1 answer
  • What is happening in the first part of this picture?
    13·1 answer
  • How many times a minute does your heart usually beat?
    6·2 answers
  • You are standing outside with two speakers. The temperature is 0 degrees C. The two speakers are playing sound of the same frequ
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!