Answer:
[OH⁻] = 4.3 x 10⁻¹¹M in OH⁻ ions.
Explanation:
Assuming the source of the carbonate ion is from a Group IA carbonate salt (e.g.; Na₂CO₃), then 0.115M Na₂CO₃(aq) => 2(0.115)M Na⁺(aq) + 0.115M CO₃²⁻(aq). The 0.115M CO₃²⁻ then reacts with water to give 0.115M carbonic acid; H₂CO₃(aq) in equilibrium with H⁺(aq) and HCO₃⁻(aq) as the 1st ionization step.
Analysis:
H₂CO₃(aq) ⇄ H⁺(aq) + HCO₃⁻(aq); Ka(1) = 4.3 x 10⁻⁷
C(i) 0.115M 0 0
ΔC -x +x +x
C(eq) 0.115M - x x x
≅ 0.115M
Ka(1) = [H⁺(aq)][HCO₃⁻(aq)]/[H₂CO₃(aq)] = [(x)(x)/(0.115)]M = [x²/0.115]M
= 4.3 x 10⁻⁷ => x = [H⁺(aq)]₁ = SqrRt(4.3 x 10⁻⁷ · 0.115)M = 2.32 x 10⁻⁴M in H⁺ ions.
In general, it is assumed that all of the hydronium ion comes from the 1st ionization step as adding 10⁻¹¹ to 10⁻⁷ would be an insignificant change in H⁺ ion concentration. Therefore, using 2.32 x 10⁻⁴M in H⁺ ion concentration, the hydroxide ion concentration is then calculated from
[H⁺][OH⁻] = Kw => [OH⁻] = (1 x 10⁻¹⁴/2.32 x 10⁻⁴)M = 4.3 x 10⁻¹¹M in OH⁻ ions.
________________________________________________________
NOTE: The 2.32 x 10⁻⁴M value for [H⁺] is reasonable for carbonic acid solution with pH ≅ 3.5 - 4.0.
Answer: D.
Explanation: D. Acetone, Acetone may be rinsed over materials to wash off the explosive residue.
Hope this helps :)
Answer:
constant appearance
Explanation:
this mean that a pure substance will have a constant appearance ,colour,density ,melting point and boiling point
Answer : The correct option is, (b) 0.087
Explanation :
The formula used for relative saturation is:

where,
= partial pressure of ethyl acetate
= vapor pressure of ethyl acetate
Given:
Relative saturation = 50 % = 0.5
Vapor pressure of ethyl acetate = 16 kPa
Now put all the given values in the above formula, we get:


Now we have to calculate the molar saturation.
The formula used for molar saturation is:

and,
P(vapor free) = Total pressure - Vapor pressure
P(vapor) =
= 8 kPa
So,
P(vapor free) = 100 kPa - 8 kPa = 92 kPa
The molar saturation will be:


Therefore, the molar saturation is 0.087