Starting in 1908, while a professor at the University of Chicago, Millikan worked on an oil-drop experiment in which he measured the charge on a single electron. J. J. Thomson had already discovered the charge-to-mass ratio of the electron.
Answer:
C. H2O is the base and H3O+ is the conjugate acid
Explanation:
According to Bronsted-Lowry acid-base theory, an acid is a substance that loses an hydrogen ion or proton (H+) while a base is a substance that gains an hydrogen ion (H+) or proton. Furthermore, this theory states that, the molecule formed when an acid donates its proton is called the CONJUGATE BASE, while the molecule formed when the base accepts proton is called CONJUGATE ACID.
In this question, the following equation is given:
NH4+(aq) + H2O(aq) ⇌NH3(aq) + H3O+ (aq)
Water (H2O) is the base in this equation because according to Bronsted-Lowry acid-base theory, it accepts an hydrogen ion (H+) while hydroxonium ion (H3O+) is the conjugate acid.
Answer:
The ratio of staggered to eclipsed conformers is 134
Explanation:
It is possible to determine the ratio of staggered to eclipsed conformers of a reactant, using the equilibrium:
Staggered ⇄ Eclipsed
Keq = [Eclipsed] / [Staggered]
That means Keq is equal to the ratio we need to find:
Using:
G˚= -RTln Keq
<em>Where G° = -12133.6J/mol</em>
<em>R is gas constant: 8.314J/molK</em>
<em>T is absolute temperature: 298K</em>
<em />
-12133.6J/mol= -8.314J/molK*298K ln Keq
4.8974 = ln Keq
134 = Keq = [Eclipsed] / [Staggered]
<h3>The ratio of staggered to eclipsed conformers is 134</h3>
C) moisture, falling air, and a lifting mechanism