<span> Using conservation of energy
Potential Energy (Before) = Kinetic Energy (After)
mgh = 0.5mv^2
divide both sides by m
gh = 0.5v^2
h = (0.5V^2)/g
h = (0.5*2.2^2)/9.81
h = 0.25m
</span>
Answer:
a) x = (0.0114 ± 0.0001) in
, b) the number of decks is 5
Explanation:
a) The thickness of the deck of cards (d) is measured and the thickness of a card (x) is calculated
x = d / 52
x = 0.590 / 52
x = 0.011346 in
Let's look for uncertainty
Δx = dx /dd Δd
Δx = 1/52 Δd
Δx = 1/52 0.005
Δx = 0.0001 in
The result of the calculation is
x = (0.0114 ± 0.0001) in
b) You want to reduce the error to Δx = 0.00002, the number of cards to be measured is
#_cards = n 52
The formula for thickness is
x = d / n 52
Uncertainty
Δx = 1 / n 52 Δd
n = 1/52 Δd / Δx
n = 1/52 0.005 / 0.00002
n = 4.8
Since the number of decks must be an integer the number of decks is 5
Answer:
t = 0.029s
Explanation:
In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:
(1)
m: mass of the water balloon = 1.20kg
Δv: change in the speed of the balloon = v2 - v1
v2: final speed = 0m/s (the balloon stops in my hands)
v1: initial speed = 13.0m/s
Δt: interaction time = ?
The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:

The interaction time to avoid that the water balloon breaks is 0.029s
If you draw the problem, it would look like that shown in the attached picture. The total length the ship will now travel can be solved using the Pythagorean theorem. The solution is as follows:
d = √(120)²+(100)²
d = 156.2 km
So, the ship will have to travel 156.2 km to the northwest direction.