pH of the buffer solution is 1.76.
Chemical dissociation of formic acid in the water:
HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq)
The solution of formic acid and formate ions is a buffer.
[HCOO⁻] = 0.015 M; equilibrium concentration of formate ions
[HCOOH] + [HCOO⁻] = 1.45 M; sum of concentration of formic acid and formate
[HCOOH] = 1.45 M - 0.015 M
[HCOOH] = 1.435 M; equilibrium concentration of formic acid
pKa = -logKa
pKa = -log 1.8×10⁻⁴ M
pKa = 3.74
Henderson–Hasselbalch equation: pH = pKa + log(cs/ck)
pH = 3.74 + log (0.015 M/1.435 M)
pH = 3.74 - 1.98
pH = 1.76
More about buffer: brainly.com/question/4177791
#SPJ4
<u>Answer:</u> The force that must be applied is 15 N.
<u>Explanation:</u>
Force exerted on the object is defined as the product of mass of the object and the acceleration of the object.
Mathematically,

where,
F = force exerted = ?
m = mass of the object = 3 kg
a = acceleration of the object = 
Putting values in above equation, we get:

Hence, the force that must be applied is 15 N.
The answer is a strike-slip. More specifically a right-lateral strike-slip.
<span>Explain the difference between a weak acid and a strong acid according to the Arrhenius theory his question in english</span>
Answer:
Nuclear fission
Explanation:
All nuclear reactors in operation are based on the principle of nuclear fission of Uranium nuclide to produce energy. These is produced is being controlled and is used in heating water to steam. The steam is then harnessed to drive or power steam turbines which is used for the generation of electricity.