The answers for this question are:
a. You push a box until it moves. = unbalanced
b. You push a box but it doesn't move. = balanced
c. <span>You stop pushing a box and it slows down. = unbalanced
As a general explanation for all the items, forces are considered balanced when they cancel each other out. This means that no net force is produced. A and C are unbalanced because one force was able to overcome the force exerted by the object.</span>
<u>Answer</u>
D. Base units
<u>Explanation</u>
Basic units are also called fundamental units. They are the standard units agreed internationally for measurements. Most of these measurements are taken from the ground and they are used to derive other units. They are seven in number. There are:
The metre (m)
The kilogram (kg)
The second (s)
The ampere (A)
The kelvin (K)
The candela (cd)
The mole (mol)
The short answer to how the aurora happens is that energetic electrically charged particles (mostly electrons) accelerate along the magnetic field lines into the upper atmosphere, where they collide with gas atoms, causing the atoms to give off light.
The first thing you should know for this case is that density is defined as the quotient between mass and volume:
D = M / V
In addition, you should keep in mind the following conversion:
1Kg = 1000g
Substituting the values we have:
D = (23.0 * 1000) / (2920) = 7.88 g / cm ^ 3
answer
the density of the iron plate is 7.88 g / cm ^ 3
Answer:
T = 2010 N
Explanation:
m = mass of the uniform beam = 150 kg
Force of gravity acting on the beam at its center is given as
W = mg
W = 150 x 9.8
W = 1470 N
T = Tension force in the wire
θ = angle made by the wire with the horizontal = 47° deg
L = length of the beam
From the figure,
AC = L
BC = L/2
From the figure, using equilibrium of torque about point C
T (AC) Sin47 = W (BC)
T L Sin47 = W (L/2)
T Sin47 = W/2
T Sin47 = 1470
T = 2010 N