The answer is 62.00 g/mol.
Solution:
Knowing that the freezing point of water is 0°C, temperature change Δt is
Δt = 0C - (-1.23°C) = 1.23°C
Since the van 't Hoff factor i is essentially 1 for non-electrolytes dissolved in water, we calculate for the number of moles x of the compound dissolved from the equation
Δt = i Kf m
1.23°C = (1) (1.86°C kg mol-1) (x / 0.105 kg)
x = 0.069435 mol
Therefore, the molar mass of the solute is
molar mass = 4.305g / 0.069435mol = 62.00 g/mol
Answer:
15.35 g of (NH₄)₃PO₄
Explanation:
First we need to look at the chemical reaction:
3 NH₃ + H₃PO₄ → (NH₄)₃PO₄
Now we calculate the number of moles of ammonia (NH₃):
number of moles = mass / molecular wight
number of moles = 5.24 / 17 = 0.308 moles of NH₃
Now from the chemical reaction we devise the following reasoning:
if 3 moles of NH₃ are produce 1 mole of (NH₄)₃PO₄
then 0.308 moles of NH₃ are produce X moles of (NH₄)₃PO₄
X = (0.308 × 1) / 3 = 0.103 moles of (NH₄)₃PO₄
mass = number of moles × molecular wight
mass = 0.103 × 149 = 15.35 g of (NH₄)₃PO₄
<span>The state of the helium in its natural form is gaseous and is a chemical element of colorless aspect and belongs to the group of noble gases. The atomic number of helium is 2. The chemical symbol of helium is He. For the following we focus on those elements and relate it with similar chemical properties. Then we find that; Neon, Hydrogen, Boron and Carbon are related to helium, either by proximity in their atomic number or period or by their group.</span>
Yes because molecules is solid
Answer:
last choice
Explanation:
oxidation and reduction can be defined in terms of adding or removing oxygen to a compound
oxidation is gaining oxygen
reduction is to loss oxygen