Answer:
electric field E = (1 /3 e₀) ρ r
Explanation:
For the application of the law of Gauss we must build a surface with a simple symmetry, in this case we build a spherical surface within the charged sphere and analyze the amount of charge by this surface.
The charge within our surface is
ρ = Q / V
Q ’= ρ V
'
The volume of the sphere is V = 4/3 π r³
Q ’= ρ 4/3 π r³
The symmetry of the sphere gives us which field is perpendicular to the surface, so the integral is reduced to the value of the electric field by the area
I E da = Q ’/ ε₀
E A = E 4 πi r² = Q ’/ ε₀
E = (1/4 π ε₀) Q ’/ r²
Now you relate the fraction of load Q ’with the total load, for this we use that the density is constant
R = Q ’/ V’ = Q / V
How you want the solution depending on the density (ρ) and the inner radius (r)
Q ’= R V’
Q ’= ρ 4/3 π r³
E = (1 /4π ε₀) (1 /r²) ρ 4/3 π r³
E = (1 /3 e₀) ρ r
Answer:
The kinetic energy of the system after the collision is 9 J.
Explanation:
It is given that,
Mass of object 1, m₁ = 3 kg
Speed of object 1, v₁ = 2 m/s
Mass of object 2, m₂ = 6 kg
Speed of object 2, v₂ = -1 m/s (it is moving in left)
Since, the collision is elastic. The kinetic energy of the system before the collision is equal to the kinetic energy of the system after the collision. Let it is E. So,

E = 9 J
So, the kinetic energy of the system after the collision is 9 J. Hence, this is the required solution.
All fluids exert pressure like the air inside a tire. The particles of fluids are constantly moving in all directions at random. As the particles move, they keep bumping into each other and into anything else in their path. These collisions cause pressure, and the pressure is exerted equally in all directions.
Answer:
Option A
You need a Angle C congruent to angle F
Explanation:
EX) Side angle Side = sas